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ABSTRACT

In this note we demonstrate how Fieller’s theorem may be used to
provide interval estimates for calibrated data obtained wusing the
classical calibration method. Using a matrix formulation of the
general linear model, it is straightforward to incorporate extensions
to the univariate, multiple regression setting. The results provided

are easily programmed in a matrix-based language such as GAUSS.

1. INTRODUCTION
The so-called ’calibration problem’ has a long and checkered
history le.g.: see Berkson (1950,1969), Krutchkoff (1967,1969) and
Williams (1969)] and whilst the early controversy has largely been

resolved, much work continues to be done on other interesting and

711

Copyright © 1991 by Marcel Dekker, Inc.



712 FOX

useful applications of calibration models [e.g.: Fox (1989(a))]. It is
not the purpose of this note to review the lengthy debate concerning
the controversy surrounding the use of ‘"classical" versus 'inverse"
methods of calibration. The reader interested in these aspects should

consult the literature review provided in Fox (1989(b)). However, we
shall make mention of these tWo fundamental strategies for the simple
linear calil;r‘ation model.

In a typical calibration experiment we collect measurements y
corresponding to some true state of nature X. For example, the random
variable Y may be an instrument reading associated with some physical
quantity, X. For calibration purposes, observations are taken on Y for
various levels of X so as to estimate the parameters in one of two
models.

The ’classical’ approach to calibration assumes the linear model:

Yi = Bo + B1Xi + €; (1.1)

where the €, are i.i.d. random variables having zero expectation and

finite variance. The parameters in equation (1.1) are estimated using

OLS to yield Bo and 81' The classical estimator, Xoc , of X
corresponding to some future value Y, is
N vy, - B
X = o e (1.2
B

1
An alternative, and equally appealing approach is to regress x on y

directly and so estimate the parameters in the model:

X =7, +7y +¢& 1.3)
where again the Ei are i{.i.d. random variables having zero expectation
and finite variance. (Clearly, equation 1.3 violates the wusual
assumption that X is measured without error and indeed most of the
controversy has centered on appropriateness of this approach).

Again, 3'0 and 71 in equation (1.3) are estimated using OLS and. thus
a calibrated Xo corresponding to some future reading Y, is given as:

Xoi = ero * 71 yo (1.4)
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The use of equation (1.4) is known as the inverse calibration
method.

The problem of placing confidence bounds on )A(o (obtained by either
method) has also been investigated [Carroll, Sacks, & Spiegelman
(1988), Fox (1989(b)), Graybill (1976),pp 280-282].

For )‘\(oc, a (1-«x)1007% prediction interval may be obtained as

follows. Let Jo(x) be the (1-a)I00% prediction interval for response vy,

i.e.:

= +
Jo(X) y = tn—2,oc/2 Te

»
>
—
—
+
|
+
*

- x)
—g ] (1.5)

. 2, . .
where Sxx is the usual sum of squares and o, is the unbiased estimator

of the error variance. Then a (1-«)1007% prediction interval for Xoc
is:

Ko(yo) = { leo € Jo\x) } (1.6)

This procedure is depicted in figure 1 below.

'y {1-@ ) 100% Prediction Band for ¥,

X, Ro Xy

Figure 1. Determination of prediction bands for Xoc

(XU and XLdenote upper and lower limits respectively).
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Scheffé (1973) suggested replacing the Jo(x) of equation (1.5} with
prediction bounds of the form:
Jx) = { yly - o e, +c slsy=sy+o lc +c s(x)] } (L7
where s{x) is the expression inside the square brackets of equation

(1.5) and < and c2 are constants chosen such that the interval has

(1-)1007 confidence. This results in a prediction interval of the

form:

K (y) = { x|y, € Jl(x)} (1.8)

The problem with Scheffé’s modification is that his own set of
tables must be consulted in order to determine c, and Cz' Carroll,
Sacks, & Spiegelman (1988) provided a modification to the Scheffé
procedure which enables c and c, to be obtained from percentiles of
the T and F distributions respectively. However, the remaining
difficulty with both the Scheffé method and that of Carroll et al. is
that the confidence Jlevel « is conditional and is therefore not
directly comparable with other, more straightforward procedures.

In the following sections we illustrate how Fieller’'s theorem
(Fieller, 1944) can be used together with a matrix formulation of the
general linear model to provide prediction intervals for Xoc. The
approach is simple to impiement and has the added advantage of
generalizing to univariate multiple regression calibration models. A

more detailed discussion concerning various strategies for this type of

calibration problem is given in Fox (1989(b)).

2. PREDICTION INTERVALS USING FIELLER’S THEOREM
Fieller’s theorem provides a general methodology for constructing
interval estimates for ratios of random variables.

Zerbe (1978) considered applications of Fieller's theorem to linear

combinations of parameter estimates in the general linear model :

Y=XB+e (2.1)
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where £ ~ N(O, 021 }
~ = “gn

and Y is an {n x 1) vector of observable random variables
X is an (n x p) full-rank design matrix

Bis a (p x 1) vector of unknown constants.
By a simple extension we can construct a prediction interval for a
calibrated X0 in the general linear model formulation of equation

(2.1).
The OLS estimator of B is:

8 = x0Ty (2.2)

having covariance matrix

1

CovlBl = T = o (X'X)” (2.3)
An unbiased estimator of o'z is

PO P

o2 = X (1 H)Y (2.4)

€ (n - p)

where H is the hat or projection matrix Xix"x)
Let £ be the sample estimate obtained by replacing crz in equation (2.3)
with the estimate of equation (2.4).

*
We define a new quantity B as the vector obtained by inserting Y0
in the first row position of 8. That is:

BT = (v, [g"] (2.5)

B”E is similarly defined by replacing B in equation (2.5) with g.
Under the assumption that Y0 is a random variable from the same

population as the original calibration data, we have:

2
a o}
e —

V = Cov[é*]
o' =

] e
= ¢ —_—— (2.6)

£l o7 ™™

where O is a (1 x p) row vector of zeros.
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The classical estimator given by equation (1.2) can be written as

~%
the ratio of linear combinations of the elements of B . Specifically,

*
K'8
= — (2.7)
*
oc LTB
where K'=11 -1 0}
T
and L =[0 o0 1]
Following Zerbe (1978), we consider the quantity
* *
K'8 -x L'8)
- oc —
. . T T 2 T
which has variance (KVK - 2x KVL + x" LVL ).
ocC ocC
Thus the quantity,
~ % ~ %
K8 -x LTg
T = 2 (2.8)

[KVK'- 2x kvLT+ x% LvLTi?
ocC oc

has a t-distribution with v = (n - p) degrees of freedom.

Therefore P[- T ] = 1 - « . Using Fieller’s

Yas2 a2

argument and dropping the subscripts on t 5 » WE set

v,/
Pl-t =T =t] = PIAX° + Bx + C = Q).
ocC ocC

It can be shown that the preceding equation is satisfied for the

following choices of A, B, and C

A=) - 2L (2.9)
2 T TR ¥ TR¥
B = 2[t" K'VL - (K'B (LB )] (2.10)
and C = (K8)? - t? K'VK (2.11)

Let a, b, and ¢ be the observed values of the corresponding random

variables. Then provided a > 0 and b® - dac > 0, the limits of the

(1-«)1007% prediction interval for X . are given as :
o

- b £ vb?% - dac

55 (2.12)
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The interval generated by this approach is equivalent to that given by
Graybill (1976,p280) when p = 2. The advantage of the present method
is that it is applicable for any p.

3. AN EXAMPLE

We illustrate the method using data originally reported by Hader
and Grandage (1958) and later used by Atkinson (1985 table 4.5 p53) to
illustrate the use of measures of influence. These data relate the
percentage yield of gasoline to four other explanatory variables
associated with the distillation and fractionation process. For each
of 32 observations, measurements were taken on: Xl, crude oil gravity;
Xz’ crude oil vapor pressure; x3, the temperature at which 107 of crude
is vaporized; Z, the temperature at which all of the gasoline has
vaporized; and y, the % gasoline yield.

For the purpose of illustration, all but the last observation were
used to estimate model parameters with the last observation being used
for calibration. In this case we assume that variable X3 is to be
calibrated for.

Using a classical regression model we may write:

Y= Bot ByXygr BRoqt B¥gt BlXyt & (3.1)

For observation #32 we have the following calibration data:
y =457, x =50.8, x_ = 8.6, x4 = 407
(X3 is also known to be 190).
Applying the method described in this paper, we have:
* T
B = [YOIBO B1 (32 Ba 34]
Therefore, K = 1 -1 x -x 0 -x1
1 2 4

and L' =[0 0 0 0 1 Ol

The vector of parameter estimates obtained using the first 31
observations is

@’_T = [-4.14 0.1954 0.4987 -0.1519 0.1525]
resulting in an {(unadjusted) R® of 0.954.
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Application of equation (2.7) gives a calibrated value of

Xs = 174.164 for observation 32.

Furthermore, the residual error variance is estimated as

rrz = 5.02885, and hence

“y 1 o
Vol 3| oo
o x™)
5020 o 0 o 0 o ]

0 112120 -0.787 -2.882  -0.279  -0.006
0 -0.787 0.011 0.004 0.001 0.000
0 -2.882 0.004 0.141 0.009 0.000
0 -0.279 0.001 0.009 0.001 0.000
L 0 -0.006 0.000 0.000 0.000  0.000

Sample values of A, B, and C obtained from equations (2.9), (2.10),

and (2.11) respectively are computed to be

a = 0.0194, b = -6.7043, ¢ = 548.5769.

The critical t-value for a 95% prediction interval is tze,o.ozs =
2.056 and thus the interval given by expression (2.12) is (133.15,
212.28). Note that the true value of X3 = 190 has been captured by the
prediction interval.

The calculations associated with this procedure are readily

programmed using a matrix-based language such as GAUSS.

4. SUMMARY
In this note we have indicated how, with a simple extension,
Fieller’s theorem may be used to generate prediction intervals in the
univariate, multiple predictor calibration problem. A matrix
formulation of the procedure lends itself to easy computation via a

programming language such as GAUSS.
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