
 

 

 

A COUPLED TRANSFER FUNCTION MODEL AND 

COMPOSITE SAMPLING STRATEGY FOR EFFICIENT 

MASS LOAD ESTIMATION  

 

 

 

 

 

 

 

 

 

David R. Fox 
Australian Centre for Environmetrics 
University of Melbourne, Australia 
david.fox@unimelb.edu.au 
 



David R. Fox (2006) : Submitted to Water Resources Research 

Abstract 

Increasingly, natural resource management and environmental regulatory agencies are 

couching water quality objectives in terms of total contaminant load over some 

defined period of time. This in turn has refocussed attention on the related issues of 

sampling and estimation methods for mass load determination. While much good 

work has already been reported on these topics, it is evident that generic advice on 

sampling design and statistical estimation methodology is unlikely to be forthcoming. 

In view of this, water quality monitoring programs often lack statistical rigor with 

sampling designs (understandably) driven largely by considerations of cost, logistics, 

and expediency. Compounding the ad hoc nature of many sampling programs is the 

plethora of computational approaches for estimating a total mass load. When applied 

to relatively sparse concentration data, these different computational approaches can 

yield wildly different load estimates. A critical missing element in the discussion of 

load estimation procedures to date is the coupling of sample design and statistical 

estimation procedure. While considerable flexibility exists in the choice of these 

monitoring components, they are neither totally independent nor arbitrary 

considerations. In this paper we show how parameter estimation for a second-order 

transfer function model of daily concentration demands a composite sampling 

approach for data collection and analysis. In this way, the sampling design and the 

load estimation procedure are coupled thus avoiding the ambiguity of multiple load 

estimates when different estimating equations are applied to the same data. The 

technique is demonstrated with the estimation of a total phosphorus load in an 

irrigation drain in the Gippsland region of Victoria, Australia. The results of this 

analysis suggest that conventional estimates of load based on monthly concentration 
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data underestimate the true load by about 30%. Using the method described in this 

paper reduced this error to 0.5%.
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1. INTRODUCTION 

The problem of estimating mass loads (of sediments and/or nutrients) is not new (Cooper 

and Watts 2002, Preston et al. 1989, Richards 1998, Cohn et al 1989, Thomas 1985, 

Degens and Donohue 2002, Moosmann et al 2005, Chu and Sanders 2003 and others). 

Indeed, considerable attention has been paid to the dual problems of (i) identification of 

an appropriate sampling strategy (Richards 1998, Littlewood 1995, Thomas 1985, 1986, 

Thomas and Lewis 1993, 1995); and (ii) choice of an estimating equation for total load 

(Cooper and Watts 2002, Clarke 1990, Aulenbach and Hooper 2005, Preston et al. 1989, 

Letcher et al 1999) Although these two objectives are inter-related, they are often treated 

as arbitrary and/or independent. Much of the attention given to the sampling issue has 

focussed on the frequency of sampling (eg. sub-daily, daily, monthly, episodic etc.) while 

numerous papers have appeared that have compared the (statistical) performance of 

various load estimation techniques (eg. mean-based estimation, regression estimators, 

ratio estimators, and others) (Clarke 1990, Vogel et al. 2005, Cooper and Watts 2002).  

While these have been useful contributions, the difficulty it seems, is that there is no 

universally ‘optimal’ approach for mass load sampling and estimation – different 

circumstances will dictate different approaches. The problem is further compounded by 

the paucity of general recommendations that enunciate the linkages between 

circumstances and approaches, thus leaving the practitioner with a bewildering array of 

sampling strategies and estimation techniques. It has been our experience that most mass 

load sampling programs are ad hoc with data collection considerations heavily influenced 

by non-statistical issues such as personal preference, institutional norms, and expediency.   
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The key inputs for any mass load estimation are concentration ( )tC and flow/discharge 

 at time t. The instantaneous flux rate ( )tQ ( )tF  is the product of concentration and 

discharge (equation 1). 

t tF C Qt= ⋅      (1) 

The total load or mass transported in the interval [0,T] is obtained by integrating the 

instantaneous flux rate: 

0

T

t tLoad C Q dt= ⋅∫     (2) 

In practice, equation (2) is approximated by the summation 

1

N

i
i

L K C Q
=

i= ⋅∑     (3) 

where Ci and Qi are measurements of concentration and flow respectively and K is a 

constant. 

Equation (3) is the simplest estimator and accords with intuition as it is essentially the 

discrete analog of equation (2). However, numerous other estimating equations have been 

proposed (see for example Letcher et al. 1999).  The simplest sampling strategy is 

systematic sampling whereby a water sample is obtained once every k time periods. The 

main advantage of this approach is a logistical one since it is easy to implement and lends 

itself to automation. The disadvantage is that the intensity of sampling bears no relation 

to the hydrology of the water body being sampled. It is well known that for most 
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catchments, significant amounts of material are transported during 'peak' flow events (eg. 

storms). In recognition of this phenomenon, more sophisticated sampling strategies have 

been devised which aim to capture these high-flow/high-load events. These strategies are 

either deterministic whereby sampling occurs whenever the flow (stage height) exceeds 

some threshold, or probabilistic in which case a statistical algorithm is used to bias the 

sampling events towards high-flow events (Thomas 1985). In either case, a common 

problem is that resource constraints are such that typically only about 12 - 30 water 

quality samples (ie. Ci values) can be obtained.  Autonomous samplers can provide flow 

data at finely resolved time steps. In contrast, concentration data are obtained relatively 

infrequently due to time, cost, and logistical considerations. Thus, it is invariably the case 

that flows and concentrations are not measured contemporaneously. The analyst is then 

faced with the issue of estimating, for example, an annual load using daily flow 

information and monthly concentrations. Common strategies involved linearly 

interpolating the monthly concentrations and resampling to a daily time base, or 

alternatively, to assume the 'spot' monthly concentration reading is indicative of the 

average for the month and to apply this to the total discharge over the month. Neither of 

these approaches is satisfactory as large errors arise (Ferguson 1986, Littlewood 1995). 

In this paper, we address the data paucity and estimation issues simultaneously by using a 

transfer function model (Littlewood 1995, Lemke 1991) whose parameters are estimated 

from monthly water quality data. Having fitted the model and estimated other key 

parameters such as the variance of the random error or shock component, simulated daily 

time-series for the water quality parameter of interest can be constructed.  The simulated 

concentrations are then matched with actual flows and a straightforward application of 
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equation (3) provides an estimate of load for the period of interest. A critical modification 

to the (assumed) monthly monitoring for water quality is required. Instead of taking a 

single sample once a month for analysis, the procedure outlined here requires that an 

average concentration be obtained from a composite monthly sample. For example, if 

flows are recorded on a daily basis, then a daily water sample must be obtained and 

stored. At the end of the month, equal volumes from each of the 30, say, water samples 

are combined. A single water quality determination is then performed on this composite 

sample. The rationale for the composite sampling is that it provides an estimate of the 

average daily concentration for that month. As will be seen in subsequent sections of this 

paper, this is a critical requirement for the development of ensuing modeling and 

estimation methodologies. It is important to note that the proposed methodology will be 

invalidated if this sampling strategy is not employed. 

2. A TRANSFER MODEL FOR (DAILY) CONCENTRATION 

Many modelling approaches have been used in an attempt to reconstruct (daily) time-

series of nutrient concentrations (Michalak and Kitanidis 2005). These range from simple 

regression models where (log) concentration is assumed to be a linear function of (log) 

flow to more complex ARIMA models which attempt to capture some of the 

autocorrelation structure usually evident in both flow and concentration data. In this 

paper, we extend the transfer function approach adopted by Littlewood (1995). 

Littlewood assumed the concentration at time i to be a function of the flow at time i and 

the concentration at time  (equation 4).  1i −

 - 7 - 



David R. Fox (2006) : Submitted to Water Resources Research 

( )
0

11i i
bC Q
B a

⋅
+ ⋅

     (4) =

In equation 4, and are model parameters and 0b 1a B is the backward shift operator ie. 

1k kB X X −⋅ = . 

For the watersheds we have investigated, there is evidence to suggest that the (log) 

concentration at time i is strongly related to the (log) flow at time i and the (log) 

concentration in the immediately two preceding time periods.  In the remainder of this 

document, unless otherwise specified, and  will denote the natural logarithms of iC iQ

concentration and flow respectively.  Our basic model is thus: 

( )
0 1

2
1 21

i
i

QC
B B i
α α ε
β β
+

= +
+ +

    (5) 

where the sα and sβ are model parameters; 2
2k kB X X −⋅ = ; and iε is a zero-mean 

random error or 'shock' component with variance 2
εσ .  

3. BASIC RESULTS 

In this section we derive a number of fundamental results for the second-order transfer 

model that will underpin the subsequent sampling and estimation strategy. We commence 

with a generic, second-order transfer model (equation 6). 

( )
0 1

2
1 21

j
j

X
Y

B B j

α α
ε

β β
+

= +
+ +

          (6) 
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)X

In deriving first and second-order moments, it is assumed Y and X have finite means 

(  and Yμ μ and variances ( 2  and Y )2
Xσ σ and we further assume that ( )2~ 0,j N jεε σ ∀ . 

3.1 Mean of Y 

Taking expectations of both sides of equation 6 gives  

0 1 1 1 2 2j j j jE Y E X Y Y jα α β β ε− −⎡ ⎤ ⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦  

0 1 1 2X Y Yα α μ β μ β μ= + + +  

and therefore 

0 1

1 21
X

Y
α α μμ

β β
+

=
− −

     (7) 

3.2 Variance of Yj 

By definition, 

( )22 2
Y j j Y jVar Y E Y E Y 2

Yσ μ μ⎡ ⎤ ⎡ ⎤⎡ ⎤= = − =⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
−  

After some algebraic manipulation (see Appendix) we obtain 

( ) ( ) ( ) ( ){ }
( )( )( )[ ]

2 2 2 2 2 2 2 2 2 2
1 2 2 1 2 1 1 1 1 2 0 1 2 1 2 1 22

2 1 2 1 2

2 2 1 2 2 2 1

1 1 1
X

Y

ε1α β β β φ α β φ α β φ β β β β α μ β σ
σ

β β β β β

− − + + − + − + + + + −
=

+ + − − +

  (8) 

where ( ) 2 2k
k X X Xφ ρ σ μ= +  and ( )k

Xρ is the order autocorrelation of X. thk

3.3 Covariance of Yj and Yj-1 

The first-order covariance between successive values of the dependent variable is 
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( )( )1 1,j j j Y j YCov Y Y E Y Yμ μ− −
⎡ ⎤⎡ ⎤ = − −⎣ ⎦ ⎣ ⎦  

     2
1j j YE Y Y μ−⎡ ⎤= −⎣ ⎦   

In order to evaluate this last expectation, some intermediate results are required. These 

are presented below and derivations are provided in the appendix. 

( )1 0 1 1 1 0 1 2 1 2 2,j j X X X Y X YE X Y α μ α φ β α μ α φ μ μ β β β μ μ−⎡ ⎤ = + + + + + +⎡ ⎤⎣ ⎦⎣ ⎦    (9) 

( )2 0 1 2 1,j j X X YE X Y 2α μ α φ μ μ β β−⎡ ⎤ = + + +⎣ ⎦                       (10) 

( )
( ) ( )( )

2
0 1 1 2 1 0 1 1 1

2 2
2 1 1 1 2 1 2 1 2 1 2

, 1

                   

j j X

X Y

E X Y α μ β β β α φ α β φ

φ α β α β μ μ β β β β β β

⎡ ⎤ = + + + + +⎣ ⎦
⎡ ⎤+ + + + + +⎣ ⎦

          (11) 

( )
( )

2 2
0 1 1 1

1
2

,
,

1
Y j j Y

j j

E X Y
E Y Y Yα μ α β σ μ

β
−

−

⎡ ⎤+ +⎣ ⎦⎡ ⎤ =⎣ ⎦ −

+
             (12) 

( )2 2
2 0 1 2 1 1 2, , ,j j Y j j j j Y YE Y Y E X Y E Y Yα μ α β β σ μ− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦            (13) 

Therefore 

( )( )
( )

( ) ( )2
1 2 1 1 2 2

1

2 3 2 2 2 2
1 1 1 2 2 1 2

2 2 3 2 2 2 2 2
1 1 2 1 2 1 1 2 1 2 1 1 1 0 1

1
1 1

,

2 2 1

2 1

j j

X

Cov Y Y

ε
β β β β β β

α β β β β β β μ

α β β β β β β φ α β β α β φ β σ

−

+ − + − +

⎡ ⎤ =⎣ ⎦
⎧ ⎫⎡ ⎤+ + − + − +⎪ ⎪⎣ ⎦
⎨ ⎬

⎡ ⎤ + − − − + − − + −⎪ ⎪⎣ ⎦ ⎩ ⎭
  (14) 

4. MODEL ESTIMATION 

As previously stated, a fundamental requirement of the proposed monitoring strategy is 

the use of composite sampling to obtain monthly 'average' concentration data. Thus, we 

wish to use the monthly means  1, ,kY k m= … to estimate the parameters of the transfer 

model (equation 6). This is done by non-linear least-squares. Hence the parameter vector 

 - 10 - 



David R. Fox (2006) : Submitted to Water Resources Research 

[ ]0 1 0 1
Tα α β βΘ = is estimated such that ( )

2

1

ˆm

i i
i

Y Y
=

−∑ is minimized, where ˆ
iY is the 

estimated monthly mean concentration, i.e. thi

( )
0 1

2
1 1 2

ˆ ˆ1ˆ      1, , ; 1,
ˆ ˆ1

in
j

i i
ji

X
Y j

n B B
n i m

α α

β β=

+
= =

+ +
∑ … …= .   (15) 

In order to use the fitted model, the actual data values, and need to be specified. The 

remainder of the sequence  (where the total number of data values ) is 

then obtained recursively using equation 6. In essence this fitted sequence models the 

mean response and not

1Y 2Y

3, , NY Y…
1

m

i
i

N n
=

=∑

 individual daily (log) concentrations. Large excursions above and 

below the mean response will arise when the variance of the random 'shock' component 

in equation 6 is relatively large. In practice, this is likely to be the case. The size of this 

discrepancy will also be magnified during the process of transforming back to the 

original scale (ie. exponentiation of the Ys). 

One way of investigating the variance in daily concentration data is to simulate daily 

concentration series with the random shock component included. The advantage of this 

approach is that the modeled data will, to a reasonable degree, exhibit the 'correct' 

autocorrelation and cross-correlation (with log-flows) structure. However, before the 

simulation method can be implemented, it will be necessary to obtain an estimate of 2
εσ . 

A method for estimating 2
εσ is developed in the next section. 
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4.1 Estimating the variance of the random shock component 

We use a method-of-moments approach whereby the sample variance between the 

monthly sample means is equated to its theoretical expectation. Thus, in order to 

implement this approach, we require an expression for the variance of the monthly 

sample means.  

Variance of Y  

Concentration data will be in the form of monthly means{ }1 2, , , mY Y Y… . Let n be the 

number of days in a month and 2n n′ = − . From equation 6 we have: 

 { }0 1 1 1 2 2
3

n

i i i
i

n Y X Y Y iα α β β ε− −
=

′ = + + + +∑    

 
1 2

0 1 1 2
3 2 1

n n n n

i i i
i i i i

n X Y Y
3

iα α β β
− −

= = = =

′= + + + +∑ ∑ ∑ ∑ε  

 ( ) ( )0 1 1 2 2 1 2 1n nn n X n Y Y Y n Y Y Y Y Y nnα α β β −′ ′ ′ ′= + + + − + + + − − + ε′  

and hence 

( )
( ) ( )

( )

1 2
1 2 1 2 1

0

1 2 1 21 1

n nX Y Y Y Y Y Y
n nY

n
β βα εα

β β β β

−+ − + + − − +⎡ ⎤ ′ ′− =⎢ ⎥− − − −⎣ ⎦
  (16) 

The left side of equation 16 can be written as the linear combination TC Z where  
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1 2 1
T

n nZ X Y Y Y Y ε−⎡ ⎤= ⎣ ⎦  and 

( )
( ) ( )1 2 1 22 2

1
1 2

1 1
1

TC
n n n n

β β β ββ βα
β β

+ − +⎡ ⎤−
= ⎢ ⎥′ ′ ′ ′− − ⎣ ⎦

 

and the variance of Y is given as TVar Y C C⎡ ⎤ = Σ⎣ ⎦ . 

For it will be reasonable to assume that autocorrelations beyond a lag of about 15 

are essentially zero. This means that covariances between

30n =

{ }1, nY Y , { }1 1, nY Y − , { }2 , nY Y , and 

{ }2 1, nY Y − can be set equal to zero. Let [ ]Cov ZΣ = have elements 

2

2
1

2
1

2
1

2
1

2

0 0 0 0
0 , 0 0
0 , 0 0
0 0 0 ,
0 0 0 ,
0 0 0 0 0

X

Y j j

j j Y

Y j j

j j Y

Cov Y Y
Cov Y Y

Cov Y Y
Cov Y Y

ε

σ

σ

σ

σ

σ

0
0
0
0
0
σ

−

−

−

−

Σ =

⎡ ⎤
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

then it can be shown that the variance between monthly sample means is given by 

equation 17. 

( )
( ) ( )2 22 2

1 2 22 2 2
1 1 1 2 2 12 2 2

1 2

41 2 2 2 ,
1

X Y
j jVar Y Cov Y Y

n n n n
ε

β β β σσ σα β β β β
β β

−

⎧ ⎫+⎪ ⎪⎡ ⎤⎡ ⎤ = + + + +⎨ ⎬⎣ ⎦ ⎣ ⎦− − ⎪ ⎪⎩ ⎭
+

⎤⎦

 (17) 

where is evaluated using equation 14. Denote the sample variance between 

the m monthly means by

1,j jCov Y Y −⎡⎣

2
YS . An estimate of the error variance may be then obtained by 
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equating 2
YS with equation 17 and solving for 2

εσ . An explicit formula for 2
εσ in terms of 

other model parameters is given in the Appendix. 

5. STOCHASTIC SIMULATION OF DAILY CONCENTRATION SERIES  

By constructing a large number of simulated daily concentration series, the variability 

and hence uncertainty in the estimated annual load can be examined. The advantage of 

this approach is that the simulated daily concentration is conditional on the observed 

discharge and the concentrations during the preceding two days. A random ‘innovation’ 

or ‘shock’ component is then added to the predicted concentration to mimic the inherent 

variability in the natural system. This approach not only permits the construction of 

empirical confidence intervals for the annual load, but also provides readily available 

estimates of other important statistics such as percentiles and maximum and minimum. 

The steps involved in constructing simulated series are summarized below. 

 

1. Estimate the parameters of the transfer function model (equation 6) as 

outlined in section 4 above; 

2. Compute the sample variance ( )2
YS  between the set of m observed monthly 

mean (log) concentrations; 

3. Using the parameter estimates obtained at step 1 in equations 8 and 14 

together with the estimated variance of the (log) flow data (call this 2ˆXσ ), 

compute the theoretical variance given by equation 17; 
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4. Find 2
εσ in equation 17 so that the result from step 3 equates to the result from 

step 2; 

5. Use the estimated transfer model (equation 6) and simulate random shock 

components from ( )2~ 0,N εε σ for each of the N mn= days in the series; 

6. Estimate the annual load using equation 3 with 1K = ; 

7. Repeat step 5 simN times where simN is the number of independent simulations; 

8. Examine statistics associated with simN load estimates. 

This procedure is demonstrated in the following section with application to the estimation 

of an annual total phosphorus (TP) load. 

 

6. EXAMPLE – ESTIMATION OF A TOTAL PHOSPHORUS LOAD  

Southern Rural Water (SRW) is responsible for the management of water resources 

within the McAlister irrigation district (MID) in central Gippsland, Victoria, Australia. 

Of primary interest to SRW is the estimation of phosphorous loads from the MID to the 

adjoining Gippsland Lakes (Figure 1). SRW have been conducting regular monitoring of 

drains, streams, and rivers within the MID for a number of years. For the main drains, 

SRW undertakes daily monitoring of both flow and total phosphorous. Nutrient 

monitoring at this intensity is extremely rare and the resulting data sets unique in their 

temporal coverage. We have used SRW's daily monitoring data of Central Gippsland 
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drain #3 (CG3) for the period March 1, 1998 to 30 September, 2004 (a total of 2,406 

daily values) to trial the methods presented in this paper.  

A time-series plot of the daily discharge is shown in Figure 2. The measured daily TP 

value together with the monthly mean is shown in Figure 3. The scatter plot of TP and 

discharge (Figure 4) illustrates the difficulty in attempting to model TP using simple 

regression procedures (ie. rating curve methods). We next apply the methods presented in 

section 4 to estimate the transfer function model parameters. To do this we assume that 

the only data available to us is the daily discharge and monthly average TP concentration. 

A plot of the daily TP concentration and the monthly averages is shown in Figure 5. 

Since the complete daily flow and concentration record is available, we are able to obtain 

the ‘true’ parameter values for the transfer model of equation 6. These will be used to 

compare the parameter estimates based on the monthly average concentration data.  

The true parameter values were found to be 

[ ] [ ]0 1 0 1 0.23102 0.07221 0.70902 0.12654T Tα α β βΘ = = − and 0.568413εσ = . 

Using the monthly mean TP data and the estimation procedure described in section 4, we 

obtain the estimated parameter values: 

[ ]0 1 0 1
ˆ ˆˆ ˆ ˆ 0.13392 0.039470 0.766722 0.124507

T Tα α β β⎡ ⎤Θ = = −⎣ ⎦ . A 

comparison of the predicted monthly mean TP concentrations based on equation 6 with 

parameter values given by Θ and those obtained using Θ̂  is shown in Figure 6. It is 

evident from Figure 6 that the series obtained using parameters estimated using the 

procedure based on the monthly mean data is in very good agreement with the series 
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generated using the 'true' model parameters. However, as previously remarked, both of 

these plots represent a mean monthly response and as such are unlikely to capture the 

large, transient peaks in concentrations that inevitably occur. Following the procedure 

outlined in section 4.1, our estimate of the between month variance, 2
YS  is 0.569736 and 

the estimated error or ‘shock’ variance is .  A complete list of parameter 

values and the method of computation is given in Table 1.  

2ˆ 0.1825εσ =

 
Load estimation 
 
Applying equation 3 (with 1K = ) to the complete record of daily discharge and 

concentration data we obtain a ‘true’ load of 58,039 tonnes. When the monthly average 

concentrations are applied to the total monthly discharges and these quantities summed 

over the period, an estimate of 42,002 tonnes is obtained. This represents a significant 

under-estimation (28%) and is typical of the degree and direction of error encountered in 

practice. For example, Clement (2001) reported errors of between 15-80% in annual 

nutrient load estimates. Using the method outlined in section 5, 1,000 series of daily 

concentrations, each of length 2,406 days were simulated (Figure 7). Figure 7 shows 

output from the transfer function model together with the actual TP series. Additionally, 

approximate 95% confidence limits for the daily TP concentration have been provided. A 

total load was computed for each of the simulated series using equation 3 (with 1K = ). 

The median load for these 1,000 estimates is 58,329 tonnes which is in remarkably good 

agreement with the true value (0.5% over-estimation). Additional insights into the load 

distribution are gained from an inspection of Figure 8. It can be seen from Figure 8 that, 
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although our method has dramatically reduced the estimation error and that the 

confidence intervals for either a mean or median load encompass the true load.  

7. DISCUSSION 

This paper brings together and extends two important aspects of mass load estimation: 

sampling strategy and estimation technique. While much attention has been paid to these 

issues separately, relatively little has been said about their inter-dependency. Our 

approach has been to extend the transfer function modelling approach of Littlewood 

(1995) to adequately characterize daily stream concentration data. Considerations of 

sampling cost and logistics led us to develop a composite sampling strategy that provides 

a surrogate measure of the average monthly concentration based on a single water quality 

determination. As in statistical ANOVA models, information contained in the observed 

variation between these monthly averages enables key parameters of the transfer model to 

be estimated.  Finally, stochastic variation is randomly generated on a daily time-step and 

added to the predicted mean daily concentration to generate series of daily concentration 

data. A total mass load is computed for each simulated series by coupling the generated 

daily concentrations with the observed daily flows. The mean and variance of this 

collection of estimated loads can be computed from which point and interval estimates 

for the total load are derived. An example is provided whereby the error in the estimated 

total load is reduced from approximately 30% to less than 1%. 
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APPENDIX  – Derivation of equations   
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XWe define ( ) 2 2k
k X Xφ ρ σ μ= +  where ( )k

Xρ is the autocorrelation at lag k for X. 

Equation 10 

( )
[ ]

2 0 1 2 1 3 2 4 2

0 1 2 1 3 2                 

j j j j j j j

X j j j j j

E X Y E X X Y Y

E E X X E X Y E X

α α β β ε

α μ α β β

− − − − −

− −

⎡ ⎤⎡ ⎤ = + + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡= + + +⎣ ⎦ ⎣ ⎦ ⎣ 4jY − ⎤⎦

1

 

As we have used a second-order transfer function model, it is assumed that correlations 

between flow and concentration beyond lags of two time periods are negligible. Thus the 

last two expectations in the equation above are set equal to the product of the individual 

means. Furthermore, 2 (1) 2 2
1 1,j j j j X X X XE X X Cov X X μ ρ σ μ φ− −⎡ ⎤ ⎡ ⎤= + = + =⎣ ⎦ ⎣ ⎦  and 

similarly 2j jE X X 2φ−⎡ ⎤ =⎣ ⎦  . Therefore 

( )2 0 1 2 1j j X X YE X Y 2α μ α φ μ μ β β−⎡ ⎤ = + + +⎣ ⎦ . 

Equation 9 

( )
[ ]

1 0 1 1 1 2 2 3 1

0 1 1 1 2 2

0 1 1 1 2 2

                 

                  = 

j j j j j j j

X j j j j j

X j j X

E X Y E X X Y Y

E E X X E X Y E X

E X Y

α α β β ε

α μ α β β

α μ α φ β β μ μ

− − − − −

− −

−

⎡ ⎤⎡ ⎤ = + + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡= + + +⎣ ⎦ ⎣ ⎦ ⎣

⎡ ⎤+ + +⎣ ⎦

3jY − ⎤⎦           

and substituting equation 10 for 2j jE X Y −⎡ ⎤⎣ ⎦ gives  

( )1 0 1 1 1 0 1 2 1 2 2,j j X X X Y X YE X Y α μ α φ β α μ α φ μ μ β β β μ μ−⎡ ⎤ = + + + + + +⎡ ⎤⎣ ⎦⎣ ⎦ . 
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Equation 11 

( )0 1 1 1 2 2

2
0 1 1 1 2               

j j j j j j j

X j j j j

E X Y E X X Y Y

E X E X Y E X Y

α α β β ε

α μ α β β

− −

− −

⎡ ⎤⎡ ⎤ = + + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤ 2j⎡ ⎤ ⎡= + + + ⎤⎣ ⎦ ⎣⎣ ⎦ ⎦

 

Noting that 2
0jE X φ⎡ ⎤ =⎣ ⎦ and substituting 1j jE X Y −⎡ ⎤⎣ ⎦ and 2j jE X Y −⎡ ⎤⎣ ⎦with their previously 

derived expressions gives (after some algebraic manipulation) 

( )
( ) ( )( )

2
0 1 1 2 1 0 1 1 1

2 2
2 1 1 1 2 1 2 1 2 1 2

, 1

                   

j j X

X Y

E X Y α μ β β β α φ α β φ

φ α β α β μ μ β β β β β β

⎡ ⎤ = + + + + +⎣ ⎦
⎡ ⎤+ + + + + +⎣ ⎦

 

Equation 12 

( )
[ ]

( )

1 1 0 1 1 1 2 2

2
0 1 1 1 1 2 1

2 2
0 1 1 1 2 1 2

                 

                  = 

j j j j j j j

X j j j j

Y j j Y Y j j

E Y Y E Y X Y Y

E E X Y E Y E Y

E X Y E Y Y

α α β β ε

α μ α β β

α μ α β σ μ β

− − − −

− − −

− −

⎡ ⎤⎡ ⎤ = + + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡= + + +⎣ ⎦ ⎣⎣ ⎦

⎡ ⎤ ⎡+ + + +⎣ ⎦ ⎣

2jY −

−

⎤⎦
⎤⎦

2− ⎤⎦

 

Noting that  we have 1 1j j j jE Y Y E Y Y− −⎡ ⎤ ⎡=⎣ ⎦ ⎣

( ) ( )2 2
2 1 0 1 1 11- = j j Y j j Y YE Y Y E X Yβ α μ α β σ μ− −⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ +

⎤⎦

 

and on replacing with equation 9 we obtain 1j jE X Y −⎡⎣

( )
( )

2 2
0 1 1 1

1
2

,
,

1
Y j j Y

j j

E X Y
E Y Y Yα μ α β σ μ

β
−

−

⎡ ⎤+ +⎣ ⎦⎡ ⎤ =⎣ ⎦ −

+
. 
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Equation 13 

( )
[ ]

( )

2 2 0 1 1 1 2 2

2
0 1 2 1 1 2 2

2 2
0 1 2 1 1 2 2

                 

                  = 

j j j j j j j

X j j j j

Y j j j j Y

E Y Y E Y X Y Y

E E X Y E Y Y E

E X Y E Y Y

α α β β ε

α μ α β β

α μ α β β σ μ

− − − −

− − −

− − −

⎡ ⎤⎡ ⎤ = + + + +⎣ ⎦ ⎣ ⎦

1j

Y

Y −⎡ ⎤⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ + + +⎣ ⎦ ⎣ ⎦

 

Noting that  we have 1 2 1j j j jE Y Y E Y Y− − −⎡ ⎤ ⎡=⎣ ⎦ ⎣ ⎤⎦

( )2 2
2 0 1 2 1 1 2, , ,j j Y j j j j Y YE Y Y E X Y E Y Yα μ α β β σ μ− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

Equation 8 

By definition ( )2 2
Y j j Y jVar Y E Y E Y

2 2
Yσ μ μ⎡ ⎤ ⎡ ⎤⎡ ⎤= = − =⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

− . 

Now,  

 

( ){ }
{ }

2
0 1 1 1 2 2

0 1 1 1 2 2

0 1 1 1 2

           

           

j j j j j j

j j j j j j j j

Y j j j j j

E Y E X Y Y Y

E Y X Y Y Y Y Y Y

E X Y E Y Y E Y Y

α α β β ε

2

j

j

α α β β ε

α μ α β β

− −

− −

− −

⎡ ⎤ = + + + +⎣ ⎦

⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦

 

Replacing the expectations with equations 11, 12, and 13 respectively gives 

( ) ( ) ( ) ( ){ }
( )( )( )[ ]

2 2 2 2 2 2 2 2 2 2
1 2 2 1 2 1 1 1 1 2 0 1 2 1 2 1 22

2 1 2 1 2

2 2 1 2 2 2 1

1 1 1
X

Y

ε1α β β β φ α β φ α β φ β β β β α μ β σ
σ

β β β β β

− − + + − + − + + + + −
=

+ + − − +
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Explicit solution of error variance 

Equations 8, 14, and 17 can be combined and solved for 2
εσ . Doing this yields 

  2 2
0 0 1 1 2 2 X X YA A A B C Dε

2 2σ φ φ φ μ σ= + + + + + σ     

where 

( ) (
2

2 21
0 2 2 1 2 1

2 2 1 2 1A
M
α )2β β β β β β⎡= − − −⎣ ⎤+ ⎦       

2
3 2 4 3 2 2 2 2 31

1 1 1 2 2 1 2 1 2 2 1 2 1 2
4 2 2A
M
α

2 1β β β β β β β β β β β β β β β− ⎡ ⎤= + − + + + + + −⎣ ⎦     

( ) ( ) ( ) ( )
2

4 2 3 2 2 2 2 41
2 1 2 1 2 1 1 1 2 1 1 1 2

4 2 2 3 3 2 2A
M
α

1β β β β β β β β β β β β β⎡ ⎤= + + − − + + − + + −⎣ ⎦  

( ) ( ) ( )
( ) (

4 2 3 3 22 1 2 1 1 2 1 1 11
3 2 2 2

1 1 1 1 2 1 1 1

2 3 2 1 2 4 5 22
              2 6 9 4 2 2 1

B
M )

2
2β β β β β β β β βα

β β β β β β β β

⎡ ⎤+ + + − − + + +− ⎢ ⎥=
⎢ ⎥− + + + − + +⎣ ⎦

 

( ) (
2

3 2 2 21
2 2 1 2 11 1nC

M
α β β β β β− ⎡ ⎤= − − + −⎣ ⎦)−  

( ) ( ) ( ) ( ) (
2

5 4 3 3 2 4 4 3
2 1 2 1 2 1 2 1 1 2 1 1 12 3 2 2 1 2 1 4 3 2 2 1nD

M
β β β β β β β β β β β β β⎡ ⎤= + − − + − − − − + − − + −⎣ ⎦)

 

( )( ) ( ) ( )2 2 2 2
2 2 1 1 1 2 14 1 2 4 2M n n n nβ β β β β β β⎡ ⎤= − − − − − + − − +⎣ ⎦n  
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FIGURES 

Figure 1.   Study region - Gippsland Lakes in eastern Victoria, Australia (inset). 

Figure 2 Time series of daily discharge (ML) for the period March 1, 1998 to 30 

September, 2004 in irrigation drain CG3. 
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)Figure 3  Time series of daily total phosphorus (TP) concentration  for the 

period March 1, 1998 to 30 September, 2004 in irrigation drain CG3. 

( 1Lgμ −

Figure 4 Scatter diagram of daily TP concentration ( )1−Lgμ and daily discharge 

(ML) ( )1−Lgμ for the period March 1, 1998 to 30 September, 2004 in 

irrigation drain CG3. 

Figure 5 Daily total phosphorus (TP) concentration ( )Lgμ 1− (gray lines) and 

monthly average TP concentration ( )1−Lgμ (solid dots) for the period 

March 1, 1998 to 30 September, 2004 in irrigation drain CG3. 

Figure 6 Predicted monthly mean ln(TP) concentration using ‘true’ transfer 

function model parameters (solid line) and estimated transfer function 

model parameters (broken line). 

Figure 7 Simulated daily ln(TP) concentrations (gray lines); actual daily ln(TP) 

concentrations (crosses); and approximate 95% confidence envelope (solid 

black lines). 

Figure 8 Statistical summary of 1,000 simulated total loads. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 6 
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Figure 7 
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Figure 8 
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TABLES 

 

Table 1  Parameters for transfer function model (equation 6), estimated or actual values, and method 

of computation. 

Parameter Value or estimate Method 
Xμ  2.324867 Mean of all daily ln(discharge) data 
Yμ  -0.3880 Equation 7 and Θ̂  
2
XS  1.308395 Variance of all daily ln(discharge) data
2
YS  0.569736 Sample variance of monthly mean 

concentration data 

1,j jCov Y Y −⎡⎣ ⎤⎦  0.799261 Equation 14 and Θ̂  
εσ  0.427200 Section 4.1 
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