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1. Introduction 
 
The accurate estimation of total loads of sediments and nutrients is a problem that is 

attracting considerable attention among natural resource managers, environmental 

protection agencies, governments, landowners, and the general community. The 

delivery of sediments from Queensland catchments has been identified as a threat to 

the ecosystem of the Great Barrier Reef, while point and diffuse sources of land-based 

nutrients are implicated in the increased frequency and severity of algal blooms in 

water bodies around the country, including the Gippsland Lakes. Accordingly, there 

has been a growing trend towards the expression of aspirational and compliance 

targets for nutrients and sediments in terms of either a relative or absolute reduction in 

total load. For example, a 20% nutrient reduction target has been imposed on 

Queensland catchments impacting the Great Barrier Reef while the Victorian EPA has 

required a 40% reduction in the total phosphorous load from the McAlister Irrigation 

District by 2005 and a commensurate 40% reduction in total nutrient loads to the 

Gippsland Lakes by 2022. A significant outcome from the Port Phillip Bay 

Environmental Study (Harris et al. 1996) was the detailed understanding of the Bay’s 

ecosystem and the identification of threshold nutrient loadings for the bay. 

Management agencies have adopted the study’s recommendation that the annual 

nitrogen load to Bay needs to be reduced by 1,000 tonnes per year and are now 

actively working toward achieving that target. We thus see that this single number – 

‘the load’, has assumed a special significance in the management of water bodies and 

consequently much importance is placed on its quantification. Various tools exist to 

compute a load and these fall into two main categories. The direct approach is to use 

actual water quality data (flows and concentrations) to estimate the mass load. The 

indirect approach is to infer the mass load using a catchment model such as SEDNET 

or EMSS. While there are difficulties with both methods, we believe the model-based 

approaches require further development (for example in the representation of the 

distribution of concentrations and the assessment of uncertainty) before their outputs 

can be reliably used – particularly in the context of assessing change relative to a 

target. Given that two to ten-fold differences in load estimates produced from 

different models are not uncommon, it is easy to appreciate that this is a hopelessly 
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inadequate way to determine if a 40% reduction, say, has been achieved over some 

prescribed period. We therefore need to address these ‘compliance’ type issues using 

direct estimation techniques. While there is broad guidance on the various 

calculations of load that can be used, it is commonly acknowledged that for any one 

catchment the most appropriate method will depend on (i) the hydrological features of 

the catchment, (ii) the accuracy in load estimation required and (iii) the quality of the 

available data. The work reported here extends these concepts and, importantly, we 

demonstrate that other factors such as ‘knowledge uncertainty’ are also important 

determinants of the accuracy and precision of load estimation.  

 

Several important innovations to improve load estimation have been developed 

through research undertaken as part of this project: 

 

1. The application of mixture modelling to identify underlying components of 

flow provides a basis on which to meaningfully stratify the annual flow regime 

and thereby provide greater certainty in (i) the detection of relationships 

between flow and concentration, (ii) the discrimination of changes in load over 

time that could be attributed to management interventions, and (iii) optimizing 

the allocation of sampling effort, either according to resource limitations or 

statistical considerations. 

 
2. A new statistical algorithm and companion software tool have been developed 

to generate flow-biased probability samples from which unbiased estimates of 

annual load are computed. 

 

3. A software tool known as GUMLEAF (Generator for Uncertainty Measures 

and Load Estimates using Alternative Formulae) (Tan et al. 2005a), has been 

developed to facilitate the computation of annual pollutant loads 

(incorporating sampling and method uncertainties) and visualisation of data 

and results, using 22 different computational methods.   

 

4. Previous research (Littlewood, 1995) on transfer function modelling of 

concentration data has been extended and this has suggested an efficient 

composite sampling strategy for load estimation. 
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We believe this work has made a significant contribution to load sampling and 

estimation methodologies and has the potential to influence the way mass loads are 

computed in the future. Additional research is now required to: 

 
• establish protocols to estimate the fate of sediment and nutrient loads passing 

through estuaries; 

• develop methods for estimating load export from non-gauged catchments; 

• run comparative studies to evaluate the performance of various sampling 

techniques; 

• Undertake a detailed analysis of the relationships between TSS and turbidity 

considering also a number of covariates that might be important in describing 

the relations. 
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2. GLOSSARY OF TERMS 
 
Accuracy An accurate measurement or estimate is one that is (numerically) close to the true 

value. 
Aliquot A portion of a sample. 
Bias The degree to which an estimate deviates from the true (but unknown) value in the 

long run (see also Error). 
 

Discharge The volume of water which passes a given point in a river or stream in a given 
period of time, a total quantity. 

Efficient In measurement, having relatively high accuracy and precision for a given amount 
of effort. 

Error The degree to which an individual estimate or measurement deviates from the true 
(but unknown) value  

Flow The rate at which water passes a given point in a river or stream at a given moment. 
The integral of flow over time is the discharge. 

Flow-proportional 
sample: 

A composite sample composed of aliquots taken in proportion to the flow rate.  

Flow-weighted 
mean 
concentration 
(FWMC) 

An average concentration whereby the weight assigned to an individual 
concentration is in direct proportion to the discharge (flow) observed at the time of 
sampling. In this scheme, concentrations measured during high flow events are 
given more importance than concentrations measured during low flow events. 

Flux: The rate at which a mass load passes a given point in a river or stream at a given 
moment. The integral of flux over time is the load. Estimated as the product of flow 
(volume) and concentration of constituents in the flowing water. 

Load The amount of material which passes a given point in a river or stream in a given 
period of time, a total quantity. 

Mass Load  Sum of instantaneous flux occurring past a point on a river over a defined period of 
time (eg tonnes over a year) 

Incertitude Lack of knowledge about parameters or models, including parameter and model 
uncertainty. 

Mean daily load The average of the daily loads for a number of days.  
Precision Reciprocal of variance. 
Random sampling A probabilistic sampling strategy in which every member of the population has an 

equal chance of being included in the sample. In sampling over time, a useful 
technique for reducing bias due to unrecognized periodicities in the system being 
sampled. 

Rating curve In hydrology, a rating curve expresses the empirical relationship between stage, or 
height of the water, and flow. In load estimation, a rating curve is a relationship 
used to calculate daily loads or concentrations from flow and other independent 
variables, usually using some form of regression. 

Residual The difference between the observed or measured value and that which has been 
predicted from a statistical model. 

Retransformation 
bias 

The bias that arises from the fact that the mean (or ‘expected value’) of a function 
of some statistic is not the same as the function applied to the mean of the statistic.  

Stratified sampling A sampling strategy which apportions the total sampling effort among a number of 
strata (eg. seasons or flow regimes). Stratified sampling often leads to more 
efficient estimates of loads, particularly with ratio estimators. 

Systematic 
sampling 

Where a sample is taken at regular or fixed intervals. Systematic sampling can be 
more efficient than random sampling, but can produce biased results, particularly if 
periodicities in the data exist. 

Time-proportional 
sample 

A composite sample composed of aliquots taken without regard to flow. Equal 
volume aliquots are taken at equal intervals. 

Total load The load for an entire period of interest, usually a month or a year.  
Water Quality 
Constituents 

Includes any materials or chemicals transported by river (soluble and insoluble). 
Can range from sediment and nutrients to salts, pesticides and heavy metals 

Variance A statistical measure of variability. The (positive) square-root is called the standard 
deviation.  
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3. Setting and evaluating load-based targets 
 
The measurement of the mass of materials carried by rivers to receiving waters such 

as wetlands, estuaries and oceans has been the subject of considerable measurement 

and research efforts. The primary intention of these efforts has been to provide 

reliable information for catchment and estuarine management (Littlewood, 1992). 

Constituents of water quality attracting most interest are commonly nutrients such as 

nitrogen (N) and phosphorus (P), and suspended sediments (TSS).  

Regional Natural Resource Management is the ‘new’ business model for achieving 

environmental outcomes under the Commonwealth’s National Action Plan for 

Salinity and Water Quality (NAPSWQ) and the National Heritage (NHT2). Narrative 

and quantitative targets with differing timeframes — aspirational (10-50 y), resource 

condition (10-20 y) and management (1-5 y) — will be the performance benchmarks 

used to evaluate the success of regionally-developed Natural Resource Management 

Plans and Investment Strategies.  

The setting, monitoring and auditing of load-based targets of a particular pollutant 

(e.g. suspended sediment, total nitrogen, total phosphorus) is a key feature of 

performance benchmarks with performance evaluation based on “reasonable 

assurance’ that specified load-based targets are being achieved. Other qualifiers such 

as likelihood, estimated, variation, high degree of confidence are often used in the 

context of load assessment. These are inherently statistical terms that impart a 

requirement to make explicit and manage the uncertainty associated with the targets.  

This is not a trivial task and requires complex statistical approaches to help ascertain 

whether compliance is being achieved with a specified level of confidence. Accurate 

load estimation requires comprehensive flow (often continuous) and concentration 

data (seldom more frequent than monthly), but as this is very seldom the case a 

variety of statistical time-averaging techniques (e.g. flow-weighted averaging, ratio, 

regression) and modelling approaches (e.g Sednet, EMSS, AQUALM) have been 

developed, that all broadly aim to interpolate a continuous data record in order to 

estimate a load.  
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3.1 Loads defined 
 
The pollutant load is the mass or weight of pollutant, which passes a cross-section of 

the river in a specified time. The loading rate, or flux, is the instantaneous rate at 

which the load is passing a point of reference on a river, such as a sampling station, 

and has units such as grams/second or tonnes/day. This is the product of pollutant 

concentration and discharge rate. The discharge rate, or flow, is the instantaneous 

rate at which water is passing the reference point, and has units of volume/time such 

as cubic meters per second (cumecs). 

 

The problem of accurately estimating the total mass load transported in a water body 

over some defined period of time is certainly not new and dates back to at least the 

1940s (Campbell and Bauder 1940). In its simplest form, the aim is to approximate 

the integral 

 

                            
1

0

( )
t

t

Load F t dt= ∫     (1) 

where F(t) is the instantaneous flux (rate of mass transport) at time t. Replacing the 

integrand of equation 1 with the product of the instantaneous concentration and 

discharge at time t gives the more familiar version (equation 2). 

 

                            
1

0

( ) ( )
t

t

Load K C t Q t dt= ∫     (2) 

where K is a units conversion factor. 

Although conceptually simple, the problem of obtaining ‘representative’ flow and 

concentration data in order to accurately and precisely estimate mass load is less 

straightforward. At its simplest level, the discrete analogue of equation 2 would 

suggest obtaining a sample of n pairs of measurements on flow and 

concentration{ },i iQ C , multiplying these together and summing viz: 

 

                            
1

n

i i
i

Load K q c
=

= ∑     (3) 
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While the estimator given by equation (3) forms the basis of most load calculations, 

its statistical properties are critically dependent on the way in which the { },i iQ C data 

are collected. 

The accuracy of the load estimate will depend on the proper application of the most 

appropriate method, little can be done to compensate for a data set which contains an 

insufficient number of observations collected using an inappropriate sampling design. 

Many load estimation programs choose monthly or quarterly sampling with no better 

rationale than that it's convenient. To avoid this, the sampling, which will be needed 

for load estimation, must be established in the initial planning process, based on 

quantitative statements of the precision required for the load estimate. If load 

estimates are to be made, determine the precision needed, based on the uses to which 

they will be put. For example, "I want the load estimates to be within 5% of the true 

loads in 90% of the years for which calculations will be made. The resources 

necessary to carry out the sampling program must be known, and budgeted for, from 

the beginning. 

Often detailed flow information is available whereas concentration observations are 

available less frequently than flow observations. This creates the basic problem of 

practical load estimation and we have following three choices of basic approach: 

 

1. Abandon most of the flow data and calculate the load using the concentration data 

and just those flows, which were observed at the same time the samples were 

taken. 

2. Find a way to estimate "missing" concentrations: i.e. concentrations to go with the 

flows observed at times when chemical samples were not taken.  

3. Do something in between - find some way to use the more detailed knowledge of 

flow to adjust the load estimated from matched pairs of concentration and flow. 

 
 

3.2 Error, Accuracy, Bias and Uncertainty  
 
Precision and accuracy measure two related but different aspects of the behaviour of 

a measurement system. If repeated measurements are made of an object, the 

measurement process is called precise if the difference among measurements is small, 

and it is called accurate if the average measurement is close to the true value. Bias is 
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the lack of accuracy; a measurement system which is unbiased is highly accurate. 

Load estimation approaches which produce low bias and high precision using 

relatively few samples are described as efficient. Generally we want an approach to 

load estimation which is as precise and accurate as possible for the number of samples 

taken, i.e. as efficient as possible. It is especially important to have a priori 

confidence in the lack of bias, since bias cannot be directly evaluated. However, when 

detecting a change in loads is more important than the actual level of the loads, we 

may choose a method which produces precise estimates, even if they are biased. 

Walling and Webb (1981) showed in a simulation study that the product of annual 

discharge and average concentration was strongly biased but quite precise, and 

pointed out that it might be useful for trend studies, in spite of the bias. Figure 1 

provides examples of bias and precision. 

 

 

 

 
Figure 1  Illustration of accuracy and bias. 

 
 
 
 



Fox, Etchells, and Tan: Protocols for the optimal measurement of nutrient loads 
 

 
AUSTRALIAN CENTRE FOR ENVIRONMETRICS      PAGE 15 

 

3.3 Types of Uncertainty 
 
Uncertainty pervades the natural environment and obscures our view of it (Burgman 

2004). To organize ideas about uncertainty, Burgman uses a taxonomy of uncertainty 

(Regan et al. 2002). At the highest level, it distinguishes between epistemic and 

linguistic uncertainty. Epistemic uncertainty exists because of the limitations of 

measurement devices, insufficient data, extrapolations and interpolations, and 

variability over time or space. In other words, we don’t know what we don’t know! 

Linguistic uncertainty, on the other hand, arises because natural language, including 

our scientific vocabulary, often is underspecific, ambiguous, vague, context 

dependent, or indeterminate. It is distinguished from epistemic uncertainty because it 

results from people using words differently or inexactly. Epistemic uncertainty 

reflects incomplete knowledge. It has six main types: measurement error, systematic 

error, natural variation, inherent randomness, model uncertainty; and subjective 

judgement. The terms ‘variability’ and ‘incertitude’ make a simple taxonomy of 

epistemic uncertainty worth describing because of its utility. Variability is naturally 

occurring, unpredictable change, differences in parameters attributable to ‘true’ 

heterogeneity or diversity in a population. Incertitude is lack of knowledge about 

parameters or models (including parameter and model uncertainty). Incertitude 

usually can be reduced by collecting more and better data. Variability is better 

understood and more reliably estimated, but is not reduced, by the collection of 

additional data.  Model uncertainty occurs because models are simple abstractions of 

reality. Models may be based on language, diagrams, flow charts, logic trees, 

mathematics or computer simulations, among others. Model uncertainty arises in two 

main ways. Firstly, usually only variables and processes that are regarded as relevant 

and important for the purpose at hand are featured in the model. Secondly, the choice 

of a way to represent observed processes involves further abstractions. Uncertainty 

associated with model selection is a difficult area because there are no accepted 

methods for treating it and there are no general guidelines for measuring the adequacy 

of a model for its intended use. Mostly, individual scientists use a given model 

because it is convenient or they are familiar with it. The only way of determining how 

appropriate a model is for prediction is to validate it by comparing predictions with 

outcomes. It will be reliable if predictions are within an acceptable margin of error.  
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Overall uncertainty of 
load estimate

Measurement UncertaintyStochastic UncertaintyKnowledge Uncertainty

-from measurement, data 
or scaling errors
-from unrepresentative 
sampling

- due to variability of 
sampled measurements

- from load estimation 
technique / model 
uncertainty

Overall uncertainty of 
load estimate

Measurement UncertaintyStochastic UncertaintyKnowledge Uncertainty

-from measurement, data 
or scaling errors
-from unrepresentative 
sampling

- due to variability of 
sampled measurements

- from load estimation 
technique / model 
uncertainty

Table 1 Types of uncertainty affecting load estimation 

Types of Uncertainty Definition Load Examples 
Epistemic   
Measurement Error Occurs because measuring equipment 

and observers are imperfect resulting in 
error. 

 

Systematic Error occurs when measurements are biased.  Wrong instrument calibration 
Natural Variation environmental change with respect to 

time, space or other variables that is 
difficult to predict. 

Variation in flow seasonality 
landforms 

Model Uncertainty occurs because models are simple 
abstractions of reality and sometimes 
significant factors causing variation are 
missed or factors are not properly 
represented or parameterised.  

Wrong load algorithm 
Not accounting for estuaries or 
groundwater 
 

Subjective judgment  Samples at wrong time or 
location resulting in 
unrepresentative sampling 

Lingustic Uncertainty   
Vagueness Arises because language permits 

borderline cases 
“high” flow event 

Context dependence Arises from a failure to specify the 
context in which a proposition is to be 
understood 

 

Ambiguity Arises when a word can have more 
than one meaning 

Base load – is this the load by a 
‘natural’ system or is this the 
load during ‘normal’ flows. 

Theoretical 
indeterminacy 

Arises from indeterminacies in our 
theoretical terms.  

 

Under-specificity Arises when a statement doesn’t 
provide the degree of specificity 
require required 

Accuracy, timeframe, place 
required for load estimation to 
occur 

 

3.4 Sources of Uncertainty in Load Estimation 
Overall, three sources of uncertainty contribute significantly to overall uncertainty in 

mass load estimation. Those three sources are knowledge uncertainty, stochastic 

uncertainty and measurement uncertainty (Figure 2). 

 
 
 
 
 
 
 
 

  

 
 

Figure 2 Sources of uncertainty in load estimation. 
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By way of example, figure 3 shows the variation in the total TP load in 2000 for 

Central Gippsland Main Drain #2 (CG02) arising from the application of 22 different 

load formulae. While the majority of estimates are around 12 tonnes, the lower 

estimates are 8 tonnes. Differences in the assessment of any load reduction will 

obviously arise depending on which technique has been used (for the same data). 

Thus, someone electing to use methods 2 or 9 (see table 3 for a description) could 

reasonably claim that the annual load was 67% lower. It is apparent that the 

assessment of the attainment of a nominal 40% load reduction target is potentially 

fraught with difficulties.  
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Figure 3  Differences in total 2002 TP load estimates for CG02. 

 

We have called the uncertainty in a load estimate arising from different computational 

approaches as ‘knowledge’ uncertainty. Knowledge uncertainty can be reduced 

through an increased understanding of the pollutant wash-off and transport processes 

which in turn helps inform the sampling and estimation procedures. In general, for 

sites with limited high flow samples, methods that do not account for flow 

stratification will tend to underestimate the ‘true’ load. 

In addition to knowledge uncertainty, stochastic uncertainty also needs to be 

considered. Stochastic uncertainty is described by the deviation of water quality 

concentrations from any assumed value (e.g. a mean) and is measured as a variance. 
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Finally, a third source of uncertainty needs to be considered arising from errors in the 

measurement, scaling or application of data. Errors could potentially arise from drift 

or mis-calibration in equipment, infilling missing data, poor sampling techniques or 

inaccurate scaling assumptions.  

 

4. Sampling for load assessment 
Much of ‘conventional’ statistical theory is built around the related concepts of 

unbiasedness and randomness. An unbiased estimator is one that theoretically neither 

consistently over-estimates nor under-estimates the true, but unknown parameter 

value. This property is generally regarded as overridingly important in the 

identification of candidate estimation methods. Simple random sampling (SRS) is a 

straightforward procedure that assigns equal probability of selection to all elements of 

the ‘population’. For example, a SRS of size n would be obtained by randomly 

generating (without replacement) n integers in the range 1 to 365. Concentration and 

flow measurements would then be obtained on the days corresponding to the n 

integers so obtained. While this procedure provides an unbiased estimate of annual 

load (since the random procedure neither favours nor handicaps the selection of any 

particular combination of flow and concentration), it will invariably be imprecise. 

This is due to this method’s lack of recognition of key features of flux patterns which 

if exploited, can potentially reduce the estimation variance. For example, it is a well 

known and often stated fact that most of an annual sediment or nutrient load is 

delivered during a small fraction of the year (corresponding to ‘peak’ flow events). 

Another sampling strategy that is easy to implement is systematic sampling (figure 4). 

 

Figure 4 Illustration of systematic sampling (after Degens and Donohue, 2002) 
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Referring to figure 4, a concentration measurement would be obtained at regular 

time intervals (corresponding to the dashed lines). This would then be multiplied 

by the average flow during the interval to obtain a flux estimate for the interval. 

Summing over all the intervals in the period of interest (equation 3) gives an 

estimate of load for the period. While the systematic sampling strategy readily 

lends itself to automation using in-situ data loggers and is appealing from the 

perspective of representativeness, like the SRS strategy, it does not focus sampling 

effort where it is most important (eg. high flow events). Systematic sampling can 

give misleading results particularly in the presence of autocorrelation and 

periodicity.  One approach that overcomes some of these difficulties is the 

stratified sampling method. This strategy assigns sampling effort in proportion to 

flux – periods of high flux are sampled more intensively than periods of low flux. 

One of the main advantages of stratified sampling is the potential reduction in 

estimation variance. It is well known that the variance of the stratified estimator 

(of a population mean or total) is less than that obtained from SRS when the 

‘between’ stratum variation is high in comparison to the ‘within’ stratum variation 

(Cochran 1963). For load estimation this is likely to be the case and so substantial 

improvements in estimation efficiency can be expected from stratification. 

However, a number of studies have demonstrated that the most significant gains in 

precision and accuracy are obtained by relatively simple stratification strategies 

(eg. high-flow / low-flow dichotomy) (Littlewood 1992, Rekolainen et al. 1991, 

Richards and Holloway 1987, Thomas and Lewis 1995).  Stratification is typically 

done with respect to time (Thomas and Lewis 1993) or flow (Thomas and Lewis 

1995). Time-stratified sampling is achieved by firstly analyzing past hydrographs 

to identify appropriate time strata. Subsequent sampling is based on a random 

selection of a pre-determined number of samples within each time stratum. The 

approach to flow-based stratification is a little different in that regular updates of 

stage information are used to dynamically control strata allocation. A probabilistic 

calculation is performed to control the sampling within each stratum. A 

modification of this approach was provided by Burn (1990) whereby the sampling 

frequency is continuously updated in light of the sampling and flows that have 

already occurred. This added flexibility avoids under or over sampling and is 

suited to monitoring programs where financial &/or physical constraints limit the 

maximum number of samples that can be analysed (Degens and Donohue 2002). 
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4.1 Sampling frequency 
The issue of an ‘appropriate’ sample size for load estimation has received 

considerable attention. Richards (1998) notes that monthly sampling for 

estimation of an annual load tends to seriously underestimate the true value. Shih 

at el. (1994) conclude that 8 time-integrated samples are required per runoff event 

to obtain a good load estimate while Yaksich and Verhoff (1983) suggest 12 

samples per runoff hydrograph are required for satisfactory load estimation.  

We have undertaken some preliminary research to investigate sample-size issues 

in two slightly different, but related contexts: (i) number of samples required to 

adequately describe the hydrograph; and (ii) number of samples required to 

estimate an annual load. Each of these is investigated in more detail in the 

following sections. 

 

4.1.1 Sample size required to describe the hydrograph 

We have undertaken a very preliminary analysis using the hydrograph shown in 

figure 5 as a test case.  
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Figure 5 Typical flow hydrograph 

One way of triggering sampling so that greater emphasis (monitoring effort) is 

applied to the rapidly rising or falling limbs of the hydrograph is to analyse a plot 

of the first derivative (figure 6). This can be approximated in real-time by 

examining successive differences in flow. The grey band in figure 3 denotes a 

region where the first derivative is not appreciably different from zero and so no 
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sampling is undertaken at these times. How to determine the width of such a band 

is not considered here and would need to be the subject of more comprehensive 

research.  
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Figure 6  Plot of first derivative of hydrograph of figure 5.  

Grey band is 'no sample' region. Vertical lines define sampling periods. 
 

Determination of the sample size n is a trade-off between accurate representation 

of the flow-duration curve (implying large n) and resource efficiency (implying 

small n). A common mathematical approach to curve-fitting is via the use of 

interpolatory splines. The panels of figure 7 shows the resulting spline fits as a 

result of varying the sample size from four to twenty-one. One spline is fit to the 

flow measured at equi-spaced times and a separate spline is fit to the flow 

measured at optimized time intervals. The criterion used in the optimization is 

minimum root mean square error between the fitted spline and the true curve.   
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Figure 7  Cubic spline representation of hydrograph of figure 5 as a function of sample size. Blue 
curve is true flow duration; green curve corresponds to equi-spaced monitoring times; maroon 
curve is optimised sampling times to give best fit. 
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It can be seen from the panels of figure 7 that a reasonable representation (using 

spline fits) of the true flow duration curve is not achieved with samples less than 

about n = 10. For 15n ≥ the spline fit using either equi-space monitoring times or 

optimized monitoring times is exceptionally good. An objective appraisal of the 

adequacy of the fitted splines is provided by plotting the root mean square error 

(rmse) as a function of n (figure 8). 
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Figure 8 Plot of root mean square error of spline fit as a function of number of data points. Blue 

curve corresponds to equi-spaced samples; red curve is optimised sampling times. 

 
The preceding analyses (figure 7) were performed over a nominal 34 hour time 

period. With n = 15 sampling occasions this implies a 2-3 hour monitoring 

interval. By restricting the spline fitting to the first 24 hour period we see that in 

this case very good representations are obtained with either n=8 (figure 9) as 

suggested by Shih at el. (1994) or n=12 (figure 10) as suggested by Yaksich and 

Verhoff (1983). 
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Figure 9 Splines fitted to first 24 hours only. Green curve is equi-spaced samples; maroon curve 
corresponds to optimised sampling times. N=8 in both cases. 
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Figure 10 Splines fitted to first 24 hours only. Green curve is equi-spaced samples; maroon curve 
corresponds to optimised sampling times. N=12 in both cases. 

 
 

4.1.2 Sample size required to estimate an annual load 

The determination of an appropriate sample size required to estimate an annual load 

with some prescribed level of accuracy and precision is non-trivial and will depend on 

many factors – not least of which is the hydrology of the system under investigation. 
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The sample size question is also an inherently statistical issue and can only be 

addressed in the context of the sampling strategy employed. For example, one may 

choose to use a systematic sample whereby data on both flow and concentration are 

collected at fixed time intervals or purposive sampling strategies may employed 

where the sampling intensity is a function of the hydrograph (eg. more sampling effort 

is devoted to the rising and falling limbs of the hydrograph, figure 11).  
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Figure 11  Record of depth data (-) and automatic sampling points (•) during the period 
29/12/2003 to 20/01/2004 for the Upper Mossman station. (From McJannet et al. 2005). 

 

We have seen in the previous section that the hydrograph is well described by 

sampling at intervals of 2-3 hours. While this is entirely feasible for flow it is 

unrealistic to expect that concentration data will be acquired at such a high sampling 

intensity since this would be prohibitively expensive. As will be seen in section 5, the 

relationship between flow and concentration is not stable and varies over a wide range 

of temporal scales. This makes it difficult to estimate a concentration from flow data 

alone. As part of our research we have investigated two fundamental sampling 

strategies for (annual) load estimation. The first is a probabilistic, biased sampling 

strategy that concentrates sampling effort on high flow events and is more suited to 

load estimation for ‘flashy’ catchments (ie. those showing high variability in flow 

regime). The second development represents an extension of the model-based 

approach suggested by Littlewood (1995) and uses a mathematical model (a transfer 
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function model) to impute concentration data on a daily time-step from sparsely 

sampled data (typically monthly). We have trialled this second method on Southern 

Rural Water’s drain monitoring data with promising results, suggesting that nutrient 

monitoring in the drains of the MID could potentially be reduced from daily to 

monthly sampling without significantly impacting the quality of the annual load 

estimates.  

In concluding this section, we believe that it is difficult to provide a generic statement 

about the sample size required for annual load estimation. It has been our experience 

that this is more a question of cost and logistics than of statistical precision. The daily 

nutrient monitoring for total phosphorous in the MID drains undertaken by Southern 

Rural Water is unique in Australia and while this has provided us with a very rich data 

set (enabling highly accurate load estimates to be obtained), it is not a viable option in 

most cases.  Based on the current research and work we have undertaken elsewhere in 

Australia, it would appear that at best, fortnightly monitoring of nutrients can be 

contemplated, although monthly monitoring is more common. With this in mind, we 

suggest that our software tool for performing size-biased sampling (Figure 12 and 

Appendix J) with a sample size of  20 to 30 be used for ‘flashy’ catchments and 

monthly composite sampling be used in conjunction with our transfer function 

modelling approach (Appendix K) be used for drains and streams having more 

consistent flow patterns. 



 
Figure 12 Screen capture from the FSS software tool for selecting flow-biased samples.
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5. Estimating Loads from Sparse Water Quality Data 
 
Sampling and catchment behaviour should inform the choice of load estimation 

technique. In particular, the choice of technique should consider the frequency of 

sampling, the alignment of sampling effort with flow regime and the variance of 

concentrations with relation to time or flow. 

Due to the relatively sparse nature of concentration data, some estimation technique 

must be applied, based on some assumptions about the behaviour of pollutant 

concentrations in-stream in the times when water quality was not sampled.  Three 

main types of data imputation techniques can be used:  

 

1. Interpolation Techniques: where assumptions are made about how 

concentrations vary in time between samples.  Typical interpolation techniques 

are to linearly interpolate between concentrations or apply cubic splines to a time 

series of concentrations.  These techniques require that concentrations from 

individual samples are assumed to represent the average daily concentration for 

the sampled day, and then the average daily concentration on non-sampled days is 

determined by linearly interpolating between fortnightly sampled concentrations. 

 

Regression or Rating Curve Techniques: where a relationship is assumed to hold 

between flow and concentration of a particular time period, say daily, and the 

concentration of non-sampled periods is inferred from the flow data.  These 

techniques can also be extended to include relationships with other variables such as 

lagged concentrations, lagged flows, seasons of a year and long-term trend.  These 

techniques can only be used where a relationship between variables is established and 

that relationship can reasonably be expected to hold in non-sampled periods. One of 

the difficulties with the rating curve method for deriving concentration estimates is 

the well know problem of different functional relationships between Q and C over 

different portions of the hydrograph (Preston et al. 1989). This has been attributed to 

differences in system hydrology and constituent behaviour as depicted in figure  13 

(Richards and Holloway 1987; Johnson 1979). 
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Figure 13  Indicative relationship between concentration and discharge  
(adapted from Preston et al. 1989). 

  

 

Because of this anomaly, fitted linear regression lines to Q-C data over the entire 

range of discharge tend to perform poorly. If the situation was as straightforward as 

indicated in figure 13, then clearly a better representation would be afforded by fitting 

a more complex model. However, it is often the case that strong Q-C relationships are 

either non-existent or masked by high levels of ‘noise’. One way of potentially 

improving the estimation of C is to partition or stratify the discharge regime and 

develop separate regression relationships in each stratum. It is also important to note 

that the fundamental Q-C relationship changes during the year. This is evidenced by 

the monthly sequence of bivariate probability distributions for CG03 shown in figure 

14. 

 

2. Averaging or Ratio Techniques: where statistics derived from the available 

concentration samples and flow time series are used to estimate loads of longer 

time spans.  For example, the annual load could be calculated as the average 

concentration of samples multiplied by the total annual measured flow.  There are 

several different Averaging or Ratio Techniques and a comparison is given.
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Figure 14.  Monthly bivariate lognormal probability distributions for monthly flow and concentration data for CG03



Fox, Etchells, and Tan: Protocols for the optimal measurement of nutrient loads 
 

 
AUSTRALIAN CENTRE FOR ENVIRONMETRICS      PAGE 32 

 

5.1 Statistical characterisation of discharge 
 
Analysis of discharges in the main drains of the McAlister irrigation district in Central 

Gippsland, Victoria uncovered interesting phenomena in the distributions of log-

transformed flow data (Fox 2003) and these have been used as the basis of flow 

stratification (figure 15).   

 

 

 

 

 

 

 

 

 

 
Figure 15 Smoothed empirical histogram of log-transformed 1998 flow data for Gippsland 

Central Drain No. 3 

A obvious feature of figure 15 is the bimodality of the empirical distribution. This 

phenomenon has been extensively investigated by Fox (2004) and has been attributed 

to base-flow and peak-flow components of the overall flow distribution. Following 

Fox (2004) we find that the overall empirical distribution (log-scale) is well described 

by a mixture of two normal distributions (figure 16).  

 

 

 

 

 

 

 

 
 

Figure 16 Mixture of fitted normal distributions for log-transformed 1998 flow data for 
Gippsland Central Drain No. 3 
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The parameters of the normal distributions and the mixing parameter are given in 

table 2 and a comparison of the resulting fit is shown in figure 17. 

 
Table 2 Parameters of fitted normal distributions for log-transformed 1998 flow data for CG03 

(φ is referred to as the ‘mixing’ parameter). 

Flow regime (i) iµ  iσ  φ  
‘Base flow’ 1.057817 0.2513603 0.34391 
‘Peak flow’ 2.825229 0.6155076 0.65609 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 17 Comparison of fitted distribution (blue line) and observed sample distribution (red 
line) for log-transformed 1998 flow data for Gippsland Central Drain No. 3 

 
 

Note, the ‘Peak’ flow mixing parameter of 66% in table 2 is in line with the 

proportion of time corresponding to the irrigation season (68%). Thus a more apt 

description of the flow regimes might be ‘Non-irrigation’ and ‘Irrigation’.  

As described in Fox (2004), the theoretical mixture distributions permit the 

identification of an ‘optimal’ classification rule for any flow. In this case the rule is: 

 
'non-irrigation'  if log( ) 1.5919 
       'irrigation' if log( ) 1.5919

flow
Flow

flow
≤⎧

= ⎨ >⎩
 

 
 
A graphical representation of this classification scheme is depicted in figure 18. 
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Figure 18. Optimal classification of G3 log-flows. 

 
 
The performance characteristics of the optimal classification scheme have been 

summarised by the matrix of conditional probabilities (Table 3). 

 
Table 3  Conditional probabilities for optimal flow classification rule. 

True Flow 

Classified Flow Non-
Irrigation 

Flow 

Irrigation 
Flow 

Non-Irrigation Flow 0.9832 0.0225 
Irrigation Flow 0.0168 0.9775 
Prior probability 0.34391 0.65609 

 
 
The overall ‘success’ rate for this classification scheme is (0.34391)(0.9832) + 

(0.65609)(0.9775) = 0.979.  In other words, an unknown flow will be correctly 

classified 98% of the time. This technique of flow stratification enables more precise 

(ie. smaller variance) annual load estimates to be computed since the flow and 

concentration characteristics are likely to be very different in the two flow regimes. 

 

5.2 Load estimation techniques 
 
Once data is available, the analyst is confronted with a seemingly long list of 

alternative computational formulae for load estimation. Letcher et al. (1999) provide a 
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list of no fewer than twenty load formulae although many of these are variants of a 

common approach (eg. estimation based on a weighted average with different 

assignment of weights). Degens and Donohue (2002) have also documented and 

compared the main load estimation procedures and cite numerous other similar 

studies. In some cases the computational approach will be dictated by the sampling 

protocol. For example, the use of a stratified estimator is clearly linked to a stratified 

sampling plan. All analytical methods fall into one of two main categories: weighted 

averages (which includes simple averaging and stratified methods) and ratio / 

regression estimators (these are combined since the ratio estimator can be thought of 

as a special case of regression estimation). Cohn (1995) also discusses the use of 

rating curves for load estimation. This is a (regression) model-based approach for 

‘infilling’ concentration data when only flow has been measured and is thus a 

regression procedure.  

Many reviews of techniques for load estimation have been previously undertaken 

(Preston et al. (1989), Cohn et al. (1989), Littlewood (1992), Letcher et al. (2002), 

Degens and Donohue (2002), Mukhopadhyay and Smith (2000)). These studies have 

usually concluded that there is no single method which provides universally precise 

and unbiased estimates. However, these reviews have typically been limited to 

specific datasets and situations, and usually, presented no link between the 

characteristics of the sampling regime employed and the load estimation technique 

used. Consequently, no generalised framework has previously been developed linking 

the types of estimation technique results to the type of sampling regime. Based on the 

available research (listed above) and overlaying the types of sampling regimes seen in 

practice, a simplified summary of appropriate load estimation techniques has been 

prepared (Table 4). This matrix provides broad guidance on the categories of 

techniques to be considered, however, there are many specific variations of these 

techniques.  
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Table 4 Typology of annual nutrient load estimation methods 

 Sampling Regime for Pollutant Concentration 

Regular sampling (e.g. weekly, 
fortnightly, monthly) 

 Sparse 
sampling 

(> monthly) Limited event 
data 

Representative 
event data 

Continuous 
sampling 

(e.g. daily, 
 near daily) 

No significant1 
relationship 
present 
(between flow 
and nutrients) 

Averaging or 
Ratio 

Averaging or 
Ratio 
• Seasonally 

stratified 

Averaging or Ratio 
• Seasonally 

stratified 
• Flow- weighted 

stratified 

Linear 
interpolation 

Significant 
relationship 
present 

 

Regression Regression or 
Averaging or 
Ratio 
• Seasonally 

stratified 

Regression or 
Averaging or Ratio 
• Seasonally 

stratified 
• Flow- weighted 

stratified 

Linear 
interpolation 

 

Additionally, guidance on the sampling regime should be adjusted depending on the 

characteristics of the catchment in question and this issue will be investigated in 

future research. The typology presented in Table 4 has been constructed by excluding 

techniques that are not valid for particular sampling regimes and catchment 

characteristics. Specifically, the typology reflects two premises: firstly, that regression 

techniques cannot be used unless a significant relationship can be demonstrated 

between water quality and some other variables such as flow, and secondly, that the 

interpolation techniques cannot be assumed to be valid unless the water quality 

samples are almost continuous. The issue of regression techniques was addressed by 

Peel and McMahon (2001) in their study of the power of nutrient load estimates 

where they assessed the significance of relationships between instantaneous flow and 

Total Nitrogen (TN), and instantaneous flow and TP. They concluded that the 

variance in TN and TP explained by instantaneous flow was too low to justify use for 

infilling unknown values of TN or TP concentrations. Therefore, unless a significant 

relationship is established for a particular site, regression techniques are of limited use 

(and are therefore not included in the following analyses). 

Figure 19 highlights the many decisions to be made in load estimation and also 

highlights how the same seven methods can be applied in three different ways: using 

                                                 
1 The significance of a regression relationship can be tested using statistical hypothesis testing 
techniques.  
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the data as a whole, on a seasonal basis and using flow stratification (where 

calculations are made for high and low flows). Further details of the methods are 

given in Table 5 below and Appendix A. 

 

Table 5 Load estimation methods used in this report 

Method 1 (A_AvCsFp) = Sample period flow-weighted averaging = sample conc x mean flow between 
sampling period in a year 
Method 2 (A_AvCmFm) = Annual mean sample conc-mean sample flow averaging = mean sample 
conc x mean sample flow in a year 
Method 3 (A_AvCsFs) = Annual sample conc-sample flow averaging = sample conc x sample flow in 
a year 
Method 4 (A_AvCmFd) = Annual mean sample conc-mean flow averaging = mean sample conc x 
mean annual flow in a year 
Method 5 (A_FWMC) = Annual flow-weighted mean conc = sample conc x sample flow in a year 
weighted by ratio of mean annual flow/mean sample flow 
Method 6 (A_RtoSim) = Annual simple ratio estimator (load estimate similar to FWMC method, but 
variance estimate differs) 
Method 7 (A_RtoKen) = Annual Kendall's ratio estimator 
Method 8 (A_RtoBea) = Annual Beale's ratio estimator 
Method 9 (S_AvCmFm) = Seasonal-stratified mean sample conc-mean sample flow averaging = sum 
of mean sample conc x mean sample flow of all seasons in a year 
Method 10 (S_AvCsFs)  = Seasonal-stratified sample conc-sample flow averaging = sum of sample 
conc x sample flow of all seasons in a year 
Method 11 (S_AvCmFd) = Seasonal-stratified mean sample conc-mean flow averaging = sum of mean 
sample conc x mean seasonal flow of all seasons in a year 
Method 12 (S_FWMC) = Seasonal-stratified flow-weighted mean conc = sum of sample conc x sample 
flow weighted by ratio of mean seasonal flow/mean sample flow of all seasons in a year 
Method 13 (S_RtoSim) = Seasonal-stratified simple ratio estimator 
Method 14 (S_RtoKen) = Seasonal-stratified Kendall's ratio estimator 
Method 15 (S_RtoBea) = Seasonal-stratified Beale's ratio estimator 
Method 16 (R_AvCmFm) = Flow regime-stratified mean sample conc-mean sample flow averaging = 
sum of mean sample conc x mean sample flow of all regimes in a year 
Method 17 (R_AvCsFs) = Flow regime-stratified sample conc-sample flow averaging = sum of sample 
conc x sample flow of all regimes in a year 
Method 18 (R_AvCmFd) = Flow regime-stratified mean sample conc-mean flow averaging = sum of 
mean sample conc x mean regime flow of all regimes in a year 
Method 19 (R_FWMC) = Flow regime-stratified flow-weighted mean conc = sum of sample conc x 
sample flow weighted by ratio of mean seasonal flow/mean sample flow of all regimes in a year 
Method 20 (R_RtoSim) = Flow regime-stratified simple ratio estimator 
Method 21 (R_RtoKen) = Flow regime-stratified Kendall's ratio estimator 
Method 22 (R_RtoBea) = Flow regime-stratified Beale's ratio estimator 

(Source: Refer to Appendix A) 
 
 

A review of the load estimation literature suggests that there are different approaches 

and needs for load estimation exercises in urban and rural settings. Load estimation in 

the urban environment usually done using models and rural settings with intensive 
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agriculture will also fall into this category.  This is mainly due to the fact that fluxes 

have different sources of variation other than the flow rate. It is also important to note 

that models generally do not work reliably at the watershed scale however relative 

estimates are useful for comparison or evaluating management scenarios. 
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Figure 19   Key characteristics of twenty two load estimation methods 

 

Sampling and catchment behaviour should inform the choice of load estimation 

technique.  In particular, the choice of technique should consider the regularity of 

sampling, the alignment of sampling effort with flow regime, and the variability of 

concentrations in relation to time or flow. 

There are many candidate methods for estimating the quantity of sediment and 

nutrients discharged from a stream.  In the first instance, Fox (2004) distinguishes 

direct estimation methods (using measured concentration and flow data) from indirect 

methods (using simulated loads from catchment models), and further identifies 

statistical design (i.e. the spatial and temporal scales of data collection) and analytical 

methodology as key issues for any direct estimation method.  This report focuses on 

issues associated with the analytical methodology of direct estimation, while future 

reports will address issues of statistical design. 
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As highlighted in Fox (2004), the problem of obtaining ‘representative’ load is 

difficult since WQ data is sparse relative to the estimation of continuous flow-

concentration flux.  There is a plethora of algorithms which can be simplified to the 

following categories. 

5.2.1 Numerical integration 
 
The simplest approach is direct numeric integration, and the total load is given by 
 

Load = 
1

n

i i i
i

c q t
=
∑  

where 
   ic  is the concentration in the thi  sample 
   iq is the corresponding flow 
   it is the time interval represented by the thi sample. 
 
Numerical integration is only satisfactory if the sampling frequency is high – often on 

the order of 100 samples per year or more, and sufficiently frequent that all major 

runoff events are well sampled. This method, and particularly the sampling strategy, 

assumes that flows are highly variable and that concentrations increase with flow. The 

sampling strategy is based on the assumption that most of the load occurs in a short 

period of time during storm runoff events, and that accurate loads can be obtained by 

sampling primarily during that period of time. If a pattern can be identified which will 

allow sampling to be allocated more efficiently by concentrating sampling at certain 

times, the schedule can be adjusted. For the period-weighted approach, measured 

concentrations were linearly interpolated through time between samples. 

As a numeric integration method, averaging approaches use some form of average in 

the calculation of the loads. The simplest approach involves multiplying the average 

concentration for some period of time by the mean daily flow for each day in the time 

period to obtain a succession of estimated daily (unit) loads.  Generally, averaging 

approaches tend to be biased if concentration is correlated with flow: the calculated 

load is too low if the correlation is positive and too high if the correlation is negative. 

The flow interval technique (Yaksich and Verhoff, 1983) is a semi-graphical 

technique, which begins with a plot of the year’s observed instantaneous fluxes as a 

function of instantaneous flows at the time the samples were taken. The plot is divided 

into several intervals of uniform size covering the range of mean daily flows for all 
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days of the year. For each interval, the average flux is calculated and the number of 

days with mean daily flows in the interval is determined. The interval load is 

calculated as the product of the average flux, the number of days in the interval, and 

the appropriate units conversion factor. The annual load is calculated by summing the 

interval loads. 

5.2.2 Regression 
 

Regression approaches develop a relationship between concentration and flow based 

on the samples taken. These data are used to establish a regression relationship of the 

form 

0 1i ic qβ β= +  

where ic is a measured concentration corresponding to flow iq . 

The parameters, 0β and 1β are estimated using ordinary least squares (OLS) regression 

and the estimated model then used to estimate concentrations for days not sampled. In 

many applications, both concentration (and flux) and flow are log-transformed to 

improve the model fit. Regression relationships between log-transformed 

concentration or flux and flow are often called rating curves.  

Simple regression approaches assume that the relationships between concentration 

and the independent variables (eg. flow, lagged-flow, season etc.), are all linear. A 

more sophisticated (non-linear) regression model is the USGS Seven-parameter 

Model: 

( ) 2 2
0 1 2 3 4 5 6ln( ) ln (ln ) sin(2 ) cos(2 )i i i i i i i ic q q t t t tβ β β β β β π β π ε= + + + + + + +  

where q is discharge (flow) and t is time. 

 

5.2.3 Ratio estimators 
 

In this method, the daily load is calculated as the product of concentration and flow on 

days on which samples are taken, and the mean of these loads is also calculated. The 

mean daily load is then adjusted by multiplying it by a flow ratio, which is derived by 

dividing the average flow for the year as a whole by the average flow for the days on 

which chemical samples were taken. The adjusted mean daily load is multiplied by 
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365 to obtain the annual load. A bias correction factor can be included in the 

calculation, to compensate for the effects of correlation between discharge and load.  

The basis of ratio estimators is the assumption that the ratio of total load to total flow 

for the entire year should be approximately the same as the ratio of total load to total 

flow for the sample. Thus, assuming a sample size of n and a period of interest, N (eg. 

N=365), the ratio estimator is obtained by equating 

1 1

1 1

n N

i i
i i
n N

i i
i i

L L

Q Q

= =

= =

=
∑ ∑

∑ ∑
 

which gives 

1

1 1

1

N

iN n
i

i in
i i

i
i

Q
L L

q

=

= =

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑ ∑

∑
 

Note, that the ratio estimator requires knowledge of the total discharge for the period 

of interest (the numerator inside the bracket above). 

Ratio estimators assume that there is a positive linear relationship between 

concentration and flow. In most applications of ratio estimators to pollutant load 

estimation, the calculations and sometimes the sampling program have been stratified, 

usually by flow and/or season. 

5.2.4 Composite methods  
 

The composite method is a new approach to estimating loads that combines the 

period-weighted approach and the regression-model method. In the composite 

method, a regression model is used to predict concentration variations between 

samples due to changing hydrologic conditions and season. A period-weighted 

approach is then used to adjust the predicted regression model concentrations to the 

actual sample concentrations when a sample is collected, and applies the residuals (the 

difference between the model predicted and observed concentrations) to the 

concentration model in a piecewise linear manner to periods between sample 

collections. 
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5.3 Rules of Thumbs for choosing load estimate 
methods 

 

We will not make a comprehensive assessment of the utility of the various estimating 

equations in tables 1 and 2 since this is well documented in the literature. The main 

observations are: 

• Averaging techniques are simple and relatively robust although biases will 

result from inadequate representation of storm events. In instances where the 

correlation between discharge and concentration is positive (negative), loads 

will tend to be underestimated (overestimated). Weighted averaging is a 

simple device that, to some extent, overcomes this drawback. A substantial 

decline in precision associated with averaging methods has been observed as 

the sample size, n decreases (ie. the time interval over which samples are 

obtained increases) (Walling and Webb (1981)). 

• Stratification can potentially improve both the accuracy and precision of load 

estimates (Preston et al. 1989).  

• Ratio estimators work best when discharge and concentration are linearly 

related (passing through the origin) with non-constant variance. They are 

considered more suited to situations where there is less intensively sampled 

concentration data. The Beale ratio estimator (Beale 1962) is widely used. 

 
A tangible outcome of our research has been the development of a software tool. 

GUMLEAF (Generator for Uncertainty Measures and Load Estimates using 

Alternative Formulae) (Tan et al. 2005a), was developed to facilitate the computation 

of annual pollutant loads (incorporating sampling and method uncertainties) and 

visualisation of data and results, using the 22 methods.  Details of the structure and 

application of this software is documented in the GUMLEAF v0.1alpha User Guide 

(Tan et al. 2005b). A complete listing of the 22 methods is given in Appendix A.  
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6 APPLICATION TO DRAINS IN THE MID 
 
Using the twenty two methods described in Appendix A, separate estimates of annual 

load were calculated for each of the six sites in the MID for each year of available 

data2. And, unless some other information or analysis is presented to limit the validity 

of particular estimation techniques, it is reasonable to assume that each of these 

estimates is equally valid.  For example, twenty two different estimates of the annual 

TP load at CG02 in 2000 and 2004 are shown in Figures 20 and 21 respectively. 

Estimates vary considerably across the twenty-two methods even though sampling 

was daily in 2000 (although there is some data missing) and every second day in 

2004. These results show considerable differences for some estimates, and 

demonstrate that the ‘true’ load cannot be calculated. 
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Figure 20 Annual TP Load Estimates for CG02 using twenty two different estimation 
techniques for 2000 

 

                                                 
2 Not all twenty two methods could be applied in all cases (for all sites in all years). In particular, some 
seasonal and flow stratification calculations could not be completed where insufficient data was 
available. Details of the number of samples and flow distribution for each site and year are presented in 
Appendix B. 

Method

1    2    3    4    5    6     7    8    9  10  11  12  13  14  15  16  17 18 19  20  21  22 10  11  12  13  14  15  16  17 18 19  20  21  22 
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CG02 (TP Load 2004)
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Figure 21 Annual TP Load Estimates for CG02 using twenty two different estimation 
techniques for 2004 

 
Future research will focus on improving our understanding of uncertainty beyond 

historical load estimation to incorporate considerations of sampling also. The design 

of sampling protocols should be developed with a corresponding load estimation 

technique in order that the uncertainty of estimates is minimised. Future research will 

provide guidance on sampling and load estimation to minimise uncertainty (with a 

minimum of water quality samples). 

It is important to note that no sampling technique can overcome information 

deficiencies from a sampling regime where disproportionately few samples are taken 

in high flow events. There is an inherent assumption in the averaging and ratio 

methods, that sampling is representative of general conditions. In practice, 

determining the pollutant concentration during high flow events is particularly 

important since a large proportion of  the annual load is transported during these 

events, and frequently, higher than average concentrations occur then.  

Using the each estimate of annual load for each site in 2000 and 2004 a five year 

percentage reduction to 2004 has been calculated (Table 6). On the basis of these 

calculations, there can be some confidence in concluding that at almost all sites there 

has been a significant reduction in nutrients. Furthermore, the standard deviation of 

some reductions is quite low giving a reasonable degree of certainty at particular sites 

(e.g. CG02 and Newry Ck). Strictly speaking, such an assessment of load reduction 

Method

1    2    3    4    5    6     7    8    9  10  11  12  13  14  15  16  17 18 19  20  21  22 10  11  12  13  14  15  16  17 18 19  20  21  22 
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should be informed by the magnitude of flow or rainfall in those years (since dry 

years will necessarily have lower flows and therefore relatively lower loads). Future 

research will address the formulation of load targets to consider the magnitude of 

flows. 

 
Table 6 Five year reductions in estimated loads between 2000 and 2004 

Method CG02 CG03 CG04 LWMD Serp Newry 
Mean 61% 19% n/a 16% 13% 38% 
Sd 5% 10% n/a 5% 18% 5% 
1 55% 26%  13% 12% 40% 
2 51% 38%  12% 45% 26% 
3 53% 32%  6% 35% 38% 
4 61% 24%  24% 14% 32% 
5 63% 15%  18% -1% 43% 
6 63% 15%  18% -1% 43% 
7 63% 15%  18% -1% 43% 
8 63% 15%  18% -1% 43% 
9 54% 40%  19% 47% 26% 
10 56% 33%  10% 35% 35% 
11 62% 23%  25% 17% 30% 
12 64% 13%  18% -1% 38% 
13 64% 13%  18% -1% 38% 
14 64% 13%  18% -1% 38% 
15 64% 13%  18% -1% 38% 
16 60% 24%  9% 45% 40% 
17 60% 21%  10% 35% 40% 
18 66% 7%  17% 14% 40% 
19 66% 7%  18% -1% 40% 
20 66% 7%  18% -1% 40% 
21 66% 7%  18% -1% 40% 
22 66% 7%  18% -1% 40% 
 

6.2 Quantification of the Uncertainty of Annual TP Load 
Estimates  

The quantification of the uncertainty of load estimates should reflect the three sources 

of uncertainty: knowledge, variability and measurement uncertainty. However, since 

no information is available regarding data uncertainty, this source will not be 

considered in this analysis.  
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The procedure used to quantify uncertainty uses Monte-Carlo simulation3 where the 

knowledge uncertainty and stochastic uncertainty were considered. The knowledge 

uncertainty was reflected since the one method for calculation (from the twenty two 

possible methods) was randomly selected, providing a particular mean and variance 

for consideration. Then, stochastic uncertainty was considered by assuming the 

estimate was normally distributed around the mean, generating a random normal 

variate with the relevant mean and variance. One thousand repetitions were generated 

and histograms produced to represent the resulting range of load estimates.  

Specifically, the method to quantify uncertainty for each site in each year consisted of 

six steps: 

1. Select random integer, j, between 1 and 22, corresponding to a particular 

method of load estimation (described in Section 2); 

2. Determine corresponding mean, µj, and variance, σ2
j, of the estimated annual 

load , for the randomly selected method and for the particular site and year; 

3. Randomly generate a standard normal variate for each repetition k, tk ~ N(0,1); 

4. Calculate the simulated load for each repetition k (Lk), such that: 

jkjk tL σµ .+=  

5. Repeat for k = 1 … 1000 

6. Present histogram of L for each site in each year. 

The uncertainty of estimated loads is presented in three forms. In Table 4, the median 

estimated annual TP loads are presented along with the 5th, 25th, 75th and 95th 

percentile values. Also, in Appendix C, a Box-Plot is presented for each site showing 

these results along with a corresponding Box-Plot of daily flow. Finally, in 

Appendices D through I, the histograms showing the frequency of simulated loads are 

given for each site in each year.  

                                                 
3 Monte-Carlo simulation relies on generating many example solutions to a problem to provide an 
approximate a numerical solution. 
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Table 7 Percentiles of Load Estimated Annual TP Loads (Tonnes) 

Site Year Load - 5th 
Percentile 

Load - 25th 
Percentile 

Median 
Load 

Load - 75th 
Percentile 

Load - 95th 
Percentile 

CG02 2000 8.2 9.8 11.3 11.9 13.2
 2001 32.6 38.8 42.6 44.0 47.7
 2002 8.6 9.8 10.8 11.4 12.4
 2003 1.1 1.1 1.2 1.3 1.3
 2004 3.8 3.9 4.2 4.3 4.5
CG03 1998 5.4 5.9 7.6 8.1 9.6
 1999 7.1 8.1 8.5 8.8 9.4
 2000 7.2 7.9 8.9 9.2 9.7
 2001 9.4 11.1 12.1 12.5 13.2
 2002 6.7 7.9 8.7 8.9 9.3
 2003 4.1 4.7 4.8 4.9 5.1
 2004 4.6 6.1 7.5 8.0 9.0
CG04 2001 2.6 3.9 4.8 5.8 7.4
 2002 8.5 10.4 11.8 13.2 15.5
 2003 2.7 3.7 4.1 4.6 5.8
 2004 1.5 2.0 2.5 2.9 3.6
LWMD 1998 2.8 5.5 6.4 7.0 8.3
 1999 5.3 5.9 6.9 7.1 7.5
 2000 2.6 2.9 3.1 3.3 3.4
 2001 15.7 17.7 19.0 20.2 22.2
 2002 5.8 6.1 6.2 6.4 6.9
 2003 0.5 0.5 0.6 0.6 0.6
 2004 2.2 2.3 2.6 2.7 3.0
Serp 2000 1.5 1.7 1.8 2.1 2.3
 2001 1.7 1.8 1.9 2.0 2.2
 2002 1.8 2.0 2.5 2.8 3.4
 2003 0.4 0.5 0.7 0.8 1.0
 2004 1.1 1.4 1.6 1.8 2.1
Newry 2000 1.5 2.1 2.3 2.4 2.7
 2001 3.3 4.3 5.2 5.5 6.2
 2002 2.9 3.3 3.6 3.8 4.1
 2003 0.6 0.7 0.7 0.8 0.8
 2004 1.1 1.3 1.4 1.5 1.6
 



Fox, Etchells, and Tan: Protocols for the optimal measurement of nutrient loads 
 

 
AUSTRALIAN CENTRE FOR ENVIRONMETRICS      PAGE 48 

7 DISCUSSION 
 
Overall, there are significant sources of uncertainty in the estimation of nutrient loads, 

arising from the choice of estimation technique (knowledge uncertainty), stochastic 

and measurement uncertainty.  

The choice of estimation technique has been shown to have a large impact on the final 

estimate and therefore, it is recommended that more emphasis be given to the 

selection and documentation of load estimation techniques in future. In particular, it is 

recommended that the framework provided in Table 2(or similar logic) is applied to 

select appropriate techniques. Furthermore, any estimation of loads should be 

accompanied by clear documentation of the techniques used (which is often missing 

in practice) and a justification of the technique selected. Additionally, when assessing 

changes in loads over time, it is essential that the same estimation technique is applied 

to determine all annual estimates for comparative purposes (i.e. to give an apples to 

apples comparison). 

A quantification of uncertainty was presented for Total Phosphorous for six sites in 

the Macalister Irrigation District for all available years. The results of this 

quantification showed that, whilst some results were quite reliable, others varied 

widely and caution should be applied in the application of those estimates. A method 

for quantifying uncertainty has been described in Section 4 and it is recommended 

that this methodology be applied wherever robust estimates are required which 

consider the potential effects of uncertainty. 

Finally, given the linkages between sampling regimes and appropriate load estimation 

techniques, it is clear that sampling regimes and protocols should be accompanied by 

details of corresponding estimation techniques. Future work will be focused on 

articulating sampling protocols and corresponding load estimation techniques to 

reduce overall uncertainty of load estimates as much as possible without significantly 

increasing the number of samples taken. 

 

7.1 Key findings 
 
A number of important observations and results have emerged during the course of 

this research. Firstly, the statistical decomposition of empirical flow data has provided 
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a rational and consistent way of applying stratified sampling techniques which 

potentially lead to more accurate load estimates. Furthermore, important insights into 

the underlying flow regimes afforded by this decomposition can inform the allocation 

of limited monitoring resources to help identify ‘optimal’ sampling strategies. Our 

work has resulted in the development of new statistical algorithms for load sampling 

and estimation and these have been embodied in two software tools. The size-biased 

sampling algorithm developed by Fox extends the earlier work of Thomas (1985) in a 

novel and significant way and enables water quality practitioners to construct flow-

biased sampling schemes even for previously ungauged waterways. The GUMLEAF 

software is the first of its kind in Australia. It is a significant development which not 

only automates the routine load calculations, but importantly enables comparisons 

between different computational methodologies as well as providing error estimates. 

This latter feature is unique and hitherto inaccessible to most practitioners. 

 

7.2 Implications 
 
We believe the work reported on here has the potential to have a pronounced impact 

on the way natural resources managers approach the related problems of: data 

collection; analysis; and interpretation in the context of sediment-nutrient load 

estimation. Our work has already been applied to other systems including tropical 

river systems, trade waste disposal via sewage effluent, and historical contaminant 

loads discharged to the coastal waters off Adelaide. The important work on error and 

uncertainty analysis for the first 

time provides the necessary 

statistical background against 

which aspirational and 

compliance targets can be 

meaningfully assessed. We 

expect that in due course, these 

results will be incorporated into 

other modelling frameworks such as TIME (The Invisible Modelling Environment) 

and the Water Quality Assessment Tool (WaQ_AT) currently being developed by the 

Queensland EPA. 
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7.3 Application and implementation 
 
Much of the work presented here is highly technical and it is recognised that a 

necessary next step involves disseminating the results in a more user-friendly manner. 

The software tools already developed and those currently under development will 

greatly facilitate this task. We envisage running a number of workshops and training 

sessions to assist in the uptake and adoption of methods described in this report. 

Preliminary discussions with colleagues have confirmed the desirability of providing 

autonomous samplers which have been programmed to implement the sampling 

strategies and load computations described in this report.   

7.4 Further Work 
Future research will focus on the following areas: 

• the estimation of loads (and associated error estimates) for entire catchments 

based on limited data for gauged rivers and streams; 

• the performance of various sampling protocols in terms of the uncertainty of 

annual load estimates; 

• the formulation of nutrient reduction targets to incorporate considerations such 

as the magnitude of flow; and 

• using data wisely to optimise the estimation of nutrient loads in waterways and 

across basins. In particular, there are several ungauged sites of interest in the 

MID and numerical techniques will be applied to determine the potential range 

of load discharge along with an indication of the corresponding uncertainty; 

• development of user-friendly software tools. 
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Appendix A: Relationship between Flow and TP for 
MID sites 
 

CG02 (Flow-TP relationship)
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CG03 (Flow-TP relationship)
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CG04 (Flow-TP relationship)
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LWMD (Flow-TP relationship)

y = 0.33x - 1.59
R2 = 0.16
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Serpentine Drain (Flow-TP relationship)
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Newry (Flow-TP relationship)
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Appendix B: Load estimation methods used 
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Seasonal form of 
Beale (1962); Table 2 
Method 5 (Preston 
1989); Method 20 
(Letcher et al. 1999) 
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Flow regime form of 
Dolan et al (1981); 
Table 1 Method 2 
(Preston 1989); 
Method 10 (Letcher 
et al. 1999) 
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flow averaging 

( )∑
=

RT

R
RRQck

1
 

Flow regime form of 
Ferguson (1987); 
Table 1 Method 5 
(Preston 1989); 
Method 13 (Letcher 
et al. 1999) 

[ ]∑
=

⎥
⎦

⎤
⎢
⎣

⎡RT

R
R

R

R LVar
n
Nk

1

 

Derived 
based on Fox 
(2005b)1 

19 R_ 
FWMC 

Flow regime-
stratified flow-
weighted mean 
conc 

( )∑
=

RT

R
RRQRk

1

ˆ  

Flow regime form of 
Walling & Webb 
(1981); Method 5 
(Littlewood 1992); 
Method 4 (Letcher et 
al. 1999) 

[ ]∑
∑

∑
=

=

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
R

R

R

T

R
Rn

i
i

n

i
iR

LVar

q

qN
k

1
2

1

1

2

 

Fox (2005b)1 
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ratio estimator ( )∑
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Cochran (1977); 
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stratified Beale's 
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Beale (1962); Table 2 
Method 5 (Preston 
1989); Method 20 
(Letcher et al. 1999) 
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Notations: 

RS nnn ,,  = number of sampled concentration days over a duration (year, season, flow regime) 

PiN  = number of measured flow days over period between mid of consecutive samples i 

RS NNN ,,  = number of measured flow days over a duration (year, season, flow regime) 

RS TT ,  = total number of strata (seasons, flow regimes) in a year 

k  = scaling factor to account for days in a duration (year or season or flow regime) with flow gaps (if any) by simple proportion 

PiQ  = total measured flow over period between mid of consecutive samples i 

RS QQQ ,,  = total measured flow over a duration (year, season, flow regime) 

ic  = sampled concentration 

RS ccc ,,  = average sampled concentration over a duration (year, season, flow regime) 

iq  = sampled flow 

Piq  = sampled flow over period between mid of consecutive samples i 

RS qqq ,,  = average sampled flow over a duration (year, season, flow regime) 

RS lll ,,  = average load over a duration (year, season, flow regime) 

R
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S
S q

lR
q
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q
lR === ˆ,ˆ,ˆ  = load-flow ratio over a duration (year, season, flow regime) 
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Abbreviations: 
Av = Averaging method,  Rto = Ratio method, 
Cs = Sample concentration,  Cm = Mean sample concentration 
Fs = Sample flow,  Fm = Mean sample flow,  Fp = Flow over period between mid of consecutive samples,  Fd = Flow over specific duration (e.g., annual, season, flow regime) 
FWMC = Flow-weighted mean concentration 
Sim = Simple,  Ken = Kendall,  Bea = Beale 
 
Notes: 
1 Variances for all averaging methods are based on bi-variate log-normal distribution of concentration and flow, 

where [ ] [ ] [ ]( )22 LELELVar −= , see Fox (2005b) for theoretical expressions of [ ]LE  and [ ]2LE . 

 
2 Variance for Beale’s ratio method is based on bi-variate normal distribution of load and flow, 

see Appendix: Variance of the Beale Estimator in Cooper & Watts (2002) for theoretical expression of [ ]τVar . 
3 Modified variance and covariance for Beale’s ratio method are based on bi-variate normal distribution of load and flow, 

see Eqn(4, 5) Mukhopadhyay & Smith (2000) for theoretical expressions of lqS  and 
2

qS . 
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Appendix C: Number of Samples and Daily Flow 
Characteristics for MID drain data 
 

   Daily Flow Characteristics (ML/day) 
Site Year # TP 

Samples 
5th 

Percentile 
25th 

Percentile Median 
75th 

Percentile 
95th 

Percentile 
CG02 2000 4.6 6.7 11.1 15.6 33.2 4.6 

 2001 6.3 8.7 12.4 23.5 63.8 6.3 
 2002 3.7 6.7 10.0 20.1 55.6 3.7 
 2003 1.0 1.6 2.9 4.2 8.1 1.0 
 2004 2.7 4.7 10.8 18.9 33.9 2.7 

CG03 1998 2.3 3.6 9.8 19.8 36.3 2.3 
 1999 0.0 6.6 22.1 30.9 45.2 0.0 
 2000 2.5 7.0 14.3 20.4 36.9 2.5 
 2001 4.3 7.7 19.0 29.9 56.7 4.3 
 2002 4.3 5.8 13.7 27.6 53.4 4.3 
 2003 0.9 1.5 4.6 12.0 27.2 0.9 
 2004 1.1 2.8 10.2 15.2 27.1 1.1 

CG04 2001 0.6 2.3 6.7 16.5 52.9 0.6 
 2002 0.1 1.7 8.3 16.9 36.6 0.1 
 2003 0.8 1.9 4.5 10.9 38.7 0.8 
 2004 0.8 1.9 4.2 8.5 22.4 0.8 

LWMD 1998 0.8 2.8 8.8 24.6 62.1 0.8 
 1999 1.5 6.4 13.6 28.4 49.4 1.5 
 2000 2.1 4.4 9.2 22.9 51.0 2.1 
 2001 3.6 7.9 15.2 32.0 73.6 3.6 
 2002 2.9 6.6 14.8 31.6 74.8 2.9 
 2003 0.4 1.3 2.1 3.9 10.0 0.4 
 2004 2.1 5.3 10.0 17.5 43.0 2.1 

Serp 2000 4.6 5.8 7.1 10.3 16.9 4.6 
 2001 4.2 4.8 7.2 10.9 18.6 4.2 
 2002 1.1 2.3 4.1 9.7 20.3 1.1 
 2003 0.3 0.7 1.5 3.1 7.8 0.3 
 2004 0.9 1.8 3.0 6.6 19.1 0.9 

Newry 2000 3.0 4.8 7.4 15.1 38.1 3.0 
 2001 4.4 7.3 11.8 25.1 124.0 4.4 
 2002 1.2 6.8 13.2 25.2 69.5 1.2 
 2003 0.4 2.0 4.4 10.3 22.2 0.4 
 2004 1.8 4.1 6.4 12.5 31.8 1.8 
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Appendix D: Box Plots of Estimated Annual TP Load 
and Flows in MID drains 
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Appendix E : Histograms of estimated annual TP 
loads for site CG02 
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Appendix F: Histograms of estimated annual TP loads 
for site CG03 
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Appendix G: Histograms of estimated annual TP loads 
for site CG04 
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Appendix H: Histograms of estimated annual TP loads 
for LWMD 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

LWMD (TP Load 1998)

0

50

100

150

200

250

-1
.0 0.
6

2.
2

3.
8

5.
4

7.
0

8.
5

10
.1

11
.7

13
.3

14
.9

Load (tonnes/yr)

Fr
eq

ue
nc

y

LWMD (TP Load 1999)

0

50

100

150

200

250

4.
0

4.
5

5.
0

5.
4

5.
9

6.
4

6.
9

7.
4

7.
8

8.
3

8.
8

Load (tonnes/yr)
Fr

eq
ue

nc
y

LWMD (TP Load 2000)

0

20

40

60

80

100

120

140

160

2.
0

2.
2

2.
4

2.
5

2.
7

2.
9

3.
1

3.
3

3.
4

3.
6

3.
8

4.
0

Load (tonnes/yr)

Fr
eq

ue
nc

y

LWMD (TP Load 2001)

0

20

40

60

80

100

120

140
12

.0

13
.4

14
.8

16
.1

17
.5

18
.9

20
.3

21
.7

23
.0

24
.4

25
.8

Load (tonnes/yr)

Fr
eq

ue
nc

y

LWMD (TP Load 2002)

0

20

40

60

80

100

120

140

160

5.
0

5.
3

5.
6

5.
9

6.
2

6.
5

6.
8

7.
1

7.
4

7.
7

8.
0

Load (tonnes/yr)

Fr
eq

ue
nc

y

LWMD (TP Load 2003)

0

50

100

150

200

250

300

350

400

450

500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Load (tonnes/yr)

Fr
eq

ue
nc

y



Fox, Etchells, and Tan: Protocols for the optimal measurement of nutrient loads 
 

 
AUSTRALIAN CENTRE FOR ENVIRONMETRICS      PAGE 74 

LWMD (TP Load 2004)
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Appendix I: Histograms of estimated annual TP loads 
for Serpentine 
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Appendix J: Histograms of estimated annual TP loads 
for Newry Ck 
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Appendix K: Simulation results for the Fox Sampling 
Strategy (FSS) for estimating nutrient loads 
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1. Introduction 
 
The accurate estimation of total loads of sediments and nutrients is a problem that is 

attracting considerable attention among natural resource managers, environmental 

protection agencies, governments, landowners, and the general community. The 

delivery of sediments from Queensland catchments has been identified as a threat to 

the ecosystem of the Great Barrier Reef, while point and diffuse sources of land-based 

nutrients are implicated in the increased frequency and severity of algal blooms in 

water bodies around the country. Accordingly, there has been a growing trend towards 

the expression of aspirational and compliance targets for nutrients and sediments in 

terms of either a relative or absolute reduction in total load. For example, a 20% 

nutrient reduction target has been imposed on Queensland catchments impacting the 

Great Barrier Reef while the Victorian EPA has required a 40% reduction in the total 

phosphorous load from the McAlister Irrigation District by 2005 and a commensurate 

40% reduction in total nutrient loads to the Gippsland Lakes by 2022.  

 

This project seeks to identify ‘optimal’ sampling and estimation strategies for 

sediment-nutrient load estimation. The first stage of the project has been associated 

with the development of a probabilistic sampling strategy (FSS4) which is both 

efficient (in terms of the amount of sampling undertaken) and robust (provides 

reliable load estimates under a variety of discharge regimes). A more detailed report is 

currently in preparation. The purpose of this progress report is to document results of 

simulation studies associated with the FSS load estimation technique and to describe 

the essential features of the companion software tool which has been developed by the 

Australian Centre for Environmetrics. 

                                                 
4 Fox Sampling Strategy 
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2. Overview of the simulation study 

 

For the purpose of assessing the efficacy of the FSS we have used a dataset provided 

by Southern Rural Water which has daily measurements on flow and total phosphorus 

over a one year period. We have assumed that the total annual phosphorus load 

obtained by summing the daily values of load x TP concentration is the ‘true’ annual 

load which is to serve as the basis for comparing load estimates obtained under FSS 

sampling. 

In the following analysis the complete flow record is denoted as 

{ }: 1,iF f i N= = K and the concentration record as { }: 1,iC c i N= = K . Let 
2
Nn < be 

the target number of samples for which measurements will be taken. A primary input 

to the FSS method is either an historical flow record or estimates for the10th , 50th , and 

90th percentiles for the flow distribution. The mathematical details of the FSS method 

are to be detailed in a separate report. An important output from the FSS method is the 

selection probability, iπ for the thi day (ie. the probability that a water quality 

measurement for day i will be required for the sample). At the end of this process (i.e. 

after N days) the actual number of samples taken will be m and this number may 

differ from the target number n due to the probabilistic nature of the FSS. 

An estimator of the total annual load is: 
 

 
1

ˆ
m

i i

i i

f cnL
m π=

= ∑  

 
The estimated variance of L̂ is calculated using the following formula: 
 

 ( )
2

1

ˆˆ 1
m

i i
i

i i

f cn LVar L
m n

π
π

∧

=

⎛ ⎞
⎡ ⎤ = − −⎜ ⎟⎣ ⎦

⎝ ⎠
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Results from a number of simulations are presented in the following sections. In each 

case N flows are randomly generated from an appropriate log-normal distribution. For 

convenience, the corresponding concentrations are assumed to be proportional to the 

flows. The algorithm is then run a total of K times (with a target sample size of 0.1N 

i.e. 10% for example) and the resulting estimated loads and standard deviations along 

with the actual sample size of measurements taken are analysed by displaying their 

histograms. In addition the fraction of results for which the actual load is not within 2 

standard deviations of the estimated load is calculated.  

The lognormal distribution can be specified by giving the 10th percentile L, the 50th 

percentile (median) M and the 90th percentile U. The paper “Using Tenth and 

Ninetieth Percentiles and the Mode to Characterize Lognormal Distributions”, Lloyd 

S. Nelson, The American Statistician, Vol 31, No 1 (Feb 1977), 26-27+30 also shows 

how the mode can be used to estimate the median (given L and U). It is important to 

note that for left-skewed distributions it is necessary for UML << and 
2

LUM +
<  

and 
2

U LMode +
< . Right-skewed lognormal distributions for flow have not been 

included in the program since these are rarely encountered in practice. 

 
 

3. Software description 
A software tool has been developed that implements the FSS as a macro in MS-Excel 

(Figure 1). The user specifies the time step (eg. daily) and the target number of 

samples to be taken over the estimation period (Figure 2). The software then creates a 

template for the entry of flow readings. As soon as a new flow is entered (Figure 3), a 

decision is made based on the FSS as to whether or not a water quality sample is to be 

taken (Figure 4). Time periods which are selected for water quality sampling are 

highlighted in the spreadsheet and data is entered once it becomes available (Figure 

5). After all water quality results have been entered, an estimate of total load for the 

period of interest is produced together with an estimated standard error (Figure 6.)
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Figure 22.  FSS Initial Screen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Initialisation of flow characteristics based either on historical data or user-defined 
percentiles. 
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Figure 3.  Data entry screen 

 
 
 
 
 
 

 

Figure 4.  Decision-making dialogue box. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.  Table of input data and selected sampling occasions (highlighted) 
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Figure 6.  Estimated annual load with standard error of estimate. 

 
 

4. Simulation Results 
Historical flow and TP concentration data from Souther Rural Water’s Central 

Gippsland Drain #3 (CG3) have been used to test the FSS. The empirical and fitted 

distributions for this flow data are shown in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Comparison of empirical cdf (open circles) and fitted log-normal distribution (solid 
line). 
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Scenraio #1: Simulated rlnorm: Meanlog= 0  SDlog= 1  Target 
fraction= 0.1 
Number of runs= 1000  Number of sample flows N = 365  
Fraction of runs for which abs(real load - estimated load) > 2*standard deviation =  
0.208  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Matrix plot of simulation results for estimated load, standard error, and actual sample 

size – scenario #1. 
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Figure 9.  Box plot of standardised bias in annual load estimated under scenario 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Box plot of proportional bias in annual load estimated under scenario #1. 
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Figure 11.  Histogram of ratio of estimated load to true load under scenario #1. 
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Figure 12.  Matrix plot of simulation results for estimated load, standard error, and actual 
sample size – scenario #2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Box plot of standardised bias in annual load estimated under scenario #2.
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Figure 14.  Box plot of proportional bias in annual load estimated under scenario #2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 15.  Histogram of ratio of estimated load to true load under scenario #2. 
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Scenario #3: Simulated rlnorm: Meanlog= 0  SDlog= 1  Target 
fraction= 0.3  
Number of runs= 1000  Num sample flows N= 365  
Fraction of runs for which abs(real load - estimated load) > 2*standard deviation =  
0.084  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 16.  Matrix plot of simulation results for estimated load, standard error, and actual 
sample size – scenario #3. 
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Figure 17.  Box plot of standardised bias in annual load estimated under scenario #3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.  Box plot of proportional bias in annual load estimated under scenario #3. 
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Figure 19.  Histogram of ratio of estimated load to true load under scenario #3. 
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Figure 20.  Matrix plot of simulation results for estimated load, standard error, and actual 
sample size – scenario #4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 21.  Box plot of standardised bias in annual load estimated under scenario #4.
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Figure 22.  Box plot of proportional bias in annual load estimated under scenario #4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.  Histogram of ratio of estimated load to true load under scenario #4. 
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Scenario #5: Simulated rlnorm: Meanlog= 0  SDlog= 0.5  
Target fraction= 0.1  
 
Number of runs= 1000  Num sample flows N= 365  
Fraction of runs for which abs(real load - estimated load) > 2*standard deviation =  
0.134  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 24.  Matrix plot of simulation results for estimated load, standard error, and actual 
sample size – scenario #5. 
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Figure 25.  Box plot of standardised bias in annual load estimated under scenario #5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26.  Box plot of proportional bias in annual load estimated under scenario #5. 
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Figure 27.  Histogram of ratio of estimated load to true load under scenario #5. 

 
 

 
Scenario #6: Simulated rlnorm: Meanlog= 0  SDlog= 0.5  
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Number of runs= 1000  Num sample flows N= 365  
Fraction of runs for which abs(real load - estimated load) > 2*standard deviation =  
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Figure 28.  Matrix plot of simulation results for estimated load, standard error, and actual 
sample size – scenario #6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29.  Box plot of standardised bias in annual load estimated under scenario #6.
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Figure 30.  Box plot of proportional bias in annual load estimated under scenario #6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31.  Histogram of ratio of estimated load to true load under scenario #6. 
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Scenario #7: Simulated rlnorm: Meanlog= 0  SDlog= 0.5  
Target fraction= 0.3  
Number of runs= 1000  Num sample flows N= 365  
Fraction of runs for which abs(real load - estimated load) > 2*standard deviation =  
0.07 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 32.  Matrix plot of simulation results for estimated load, standard error, and actual 
sample size – scenario #7. 

stats.estimatedLoad

10 15 20 25 30 35 40

50
0

55
0

60
0

10
15

20
25

30
35

40

stats.estimatedLoadSD

500 550 600 90 100 110 120 130

90
10

0
11

0
12

0
13

0

stats.actualSampleSize



Fox, Etchells, and Tan: Protocols for the optimal measurement of nutrient loads 
 

 
AUSTRALIAN CENTRE FOR ENVIRONMETRICS      PAGE 105 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33.  Box plot of standardised bias in annual load estimated under scenario #7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.  Box plot of proportional bias in annual load estimated under scenario #7.
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Figure 35.  Histogram of ratio of estimated load to true load under scenario #7. 

 
 
 
Scenario #8: Actual data:  Target fraction= 0.1 (Outlier 
57replaced by 1.111) 
Number of runs= 1000  Num sample flows N= 261  
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0.086 
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Figure 36.  Matrix plot of simulation results for estimated load, standard error, and actual 

sample size – scenario #8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37.  Box plot of standardised bias in annual load estimated under scenario #8. 
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Figure 38.  Box plot of proportional bias in annual load estimated under scenario #8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39.  Histogram of ratio of estimated load to true load under scenario #8. 
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APPENDIX L: A Transfer Modelling Approach to 
Sediment-Nutrient Load Estimation5 
David R. Fox 
The Australian Centre for Environmetrics 
University of Melbourne  
Parkville, Victoria, Australia 
david.fox@unimelb.edu.au 
 
Introduction 
The problem of estimating mass loads (of sediments &/or nutrients is not new). By 
definition, the instantaneous flux rate at time t is defined as the product of the 
sediment/nutrient concentration at time t and the instantaneous flow (discharge) at 
time t: 

(1)  t t tF C Q= ⋅   
The total load or mass transported in the interval [0,T] is obtained by integrating the 
instantaneous flux rate: 

(2)  
0

T

t tLoad C Q dt= ⋅∫   

In practice, equation (1) is approximated by the summation 

(3) 
1

n

i i
i

L K C Q
=

= ⋅∑  

where Ci and Qi are measurements of concentration and flow respectively and K is a 
constant. 

 
Many papers have been published on the dual problems of: (i) how to gather 

the flow-concentration data ie. sampling strategies; and (ii) the estimation process 
itself. Equation (2) is the simplest estimator and accords with intuition as it is 
essentially the discrete analog of equation (1). However, numerous other estimating 
equations have been proposed (see for example Letcher et al. (1999).  The simplest 
sampling strategy is systematic sampling whereby a water sample is obtained once 
every k time periods. The main advantage of this approach is a logistical one since it 
is easy to implement and lends itself to automation. The disadvantage is that the 
intensity of sampling bears no relation to the hydrology of the water body being 
sampled. It is well known that for most catchments, significant amounts of material 
are transported during 'peak' flow events (eg. storms). In recognition of this 
phenomenon, more sophisticated sampling strategies have been devised which aim to 
capture these high-flow/high-load events. These strategies are either deterministic 
whereby sampling occurs whenever the flow (stage height) exceeds some threshold, 
or probabilistic in which case a statistical algorithm is used to bias the sampling 
events towards high-flow events. In either case, a common problem is that resource 
constraints are such that typically only about 12 - 30 water quality samples (ie. 

iC values) can be obtained.   
 
In contrast to the usual paucity of concentration data, information on flows is much 
more abundant since these can be obtained from in-situ data loggers. Thus, it is 
invariably the case that flows and concentrations are not measured 

                                                 
5 This paper presented at International Statistical Institute, 55th Session 2005, Sydney. 
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contemporaneously. The analyst is then faced with the issue of estimating, for 
example, an annual load using daily flow information and monthly concentrations. 
Common strategies involve linearly interpolating the monthly concentrations and 
resampling to a daily time base, or alternatively, to assume the 'spot' monthly 
concentration reading is indicative of the average for the month and to apply this to 
the total volume of water over the month. Neither of these approaches is satisfactory 
as large errors arise. 
 

 In this paper, we address the data paucity and estimation issues simultaneously 
by using a transfer function model whose parameters are estimated from monthly 
water quality data. Having fitted the model and estimated other key parameters such 
as the variance of the random error or shock component, simulated daily time-series 
for the water quality parameter of interest can be constructed. The simulated 
concentrations are then matched with actual flows and a straightforward application 
of equation (3) provides an estimate of load for the period of interest. A critical 
modification to the (assumed) monthly monitoring for water quality is required. 
Instead of taking a single sample once a month for analysis, the procedure outlined 
here requires that an average concentration be obtained from a composite monthly 
sample.  
 
A transfer model for daily concentration data 
For the catchments we have investigated, there is evidence to suggest that the (log) 
concentration at time i is strongly related to the (log) flow at time i and the (log) 
concentration in the immediately two preceding time periods.  Let Ci and Qi denote 
the natural logarithms of concentration and flow respectively.  Our model (equation 4) 
is an extension of the first-order transfer model adopted by Littlewood (1995): 
 

(4) ( )
0 1

2
1 21

i
i i

QC
B B
α α ε

β β
+

= +
+ ⋅ + ⋅

 

where the αs and βs are model parameters; B is the backward shift operator and εi is a 
random error or 'shock' component.  
 
Results 
Having estimated the model parameters, equation 4 may be used recursively (given 
initial values for 1C and 2C ) to generate sequences of daily concentration data (Figure 
1). For each generated sequence, an estimate of total load is obtained using equation 
3. Statistics (eg. Mean and standard error) are then computed for the collection of N 
load estimates to provide an interval estimate for the true total load. An application of 
the methodology estimated the phosphorous load in an irrigation channel in 
Gippsland, Victoria to within 3% of the true load. This is compared with a 30% over-
estimate using monthly data.  
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Figure 24.  Simulated daily series (cyan lines) and actual daily series (red line) 
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Appendix M: Error Approximations 
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1. Introduction 
 
The accurate estimation of total loads of sediments and nutrients is a problem that is 

attracting considerable attention among natural resource managers, environmental 

protection agencies, governments, landowners, and the general community. The 

delivery of sediments from Queensland catchments has been identified as a threat to 

the ecosystem of the Great Barrier Reef, while point and diffuse sources of land-based 

nutrients are implicated in the increased frequency and severity of algal blooms in 

water bodies around the country. Accordingly, there has been a growing trend towards 

the expression of aspirational and compliance targets for nutrients and sediments in 

terms of either a relative or absolute reduction in total load. For example, a 20% 

nutrient reduction target has been imposed on Queensland catchments impacting the 

Great Barrier Reef while the Victorian EPA has required a 40% reduction in the total 

phosphorous load from the McAlister Irrigation District by 2005 and a commensurate 

40% reduction in total nutrient loads to the Gippsland Lakes by 2022. As noted by 

Henderson and Bui (2004), the quantification of errors and uncertainty is particularly 

important in the context of ecological risk assessments as a failure to do so may lead 

to risks being significantly under or over-estimated. 

 

This report focuses on the quantification of errors associated with a number of 

common load estimation techniques. We also point out the duality between simple 

mean-based load estimators and ratio estimation techniques.  

 

2. Load Estimation 
A list of some 24 computational techniques for estimating a load was provided in 

Letcher et al. (2002).  Most of these formulae can be classified as belonging to one of 

the groupings: mean-based estimators; ratio estimators; and regression estimators. In 

this paper we consider a class of load estimators given by equation 1. 

 

 
1 1

ˆ
qc nn

i i j j
i j

L K w c v q
= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑     (1) 
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where ic is a measured concentration on the thi occasion; jq is a measured flow on the 

thj occasion and iw and jv are weights6. K is a constant that reconciles the sampling 

time-step with the period of interest (eg. if concentrations and flows represent daily 

values and an annual load estimate is required, then K=365). 

 

3. Theoretical mean and variance  
 
Before turning our attention to the properties of load estimators, it will be useful to 

develop some theoretical results for the expected value and variance of a load under 

certain distributional assumptions. In what follows we assume (not unreasonably), 

that the distribution of concentration ( )C  and flow ( )Q are well described by the 

bivariate lognormal distribution given by equation 2 and that load, L C Q= .

 

,

22

2

22

( )

ln( ) ln( ) ln( )1 1 ln( )
exp 2

2(1 )2 1

,C Q

Q Q QC

C C Q QC Q

f

c q qc

cq

c q

µ µ µµ
ρ

ρ σ σ σ σπ σ ρσ

=

− − −−
− − +

−−

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪
⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

 

(2) 

where µ and σ are the mean and standard deviation of the log-transformed data and 

ρ is the correlation between log concentration and log flow. 

Fox (2004) showed that the expected load is given by equation 3. 

 

[ ]

( ) ( ) ( ) ( ) ( ) ( )2 2

2exp
1 2

2 1C Q Q C C Q Q C C Q

E L

µ µ ρσ σ ρσ σ ρ ρσ σ ρσ σ
ρ

=

⎧ ⎫⎪ ⎪⎡ ⎤+ + + + + − + +⎨ ⎬⎢ ⎥⎣ ⎦−⎪ ⎪⎩ ⎭
 

(3) 

 

Furthermore, it can be established that the second (uncorrected) moment is: 

                                                 
6 The weights are somewhat arbitrary although values are usually determined by the nature of the sampling 
scheme. For example, a constant weight of 1/n implies a simple average while flow weighted averaging implies 
weights are determined on the basis of observed flow (higher flow implying higher weight). 
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( ) ( ) ( ) ( ) ( ) ( )

2

2 2

2exp
22 2

1C Q Q C C Q Q C C Q

E L

µ µ ρσ σ ρσ σ ρ ρσ σ ρσ σ
ρ

=⎡ ⎤⎣ ⎦
⎧ ⎫⎪ ⎪⎡ ⎤+ + + + + − + +⎨ ⎬⎢ ⎥⎣ ⎦−⎪ ⎪⎩ ⎭

 

(4) 

and so the variance is given as 

 

 [ ] [ ]( )22Var L E L E L⎡ ⎤= −⎣ ⎦     (5) 

4. Uncertainty in load estimates 
 

We next turn our attention to sampling properties of the estimator given by equation 

1. In particular, it can be shown that an approximation7 to the variance is: 

 

 [ ]2 2 2

1 1

ˆ
qc nn

i j
i j

Var L K w v Var L
= =

⎛ ⎞⎛ ⎞⎡ ⎤ = ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
∑ ∑    (6) 

 

For suitable choices of the weights iw and jv we can obtain variance approximations 

for a number of common load estimators. Furthermore, the duality between a ratio 

estimator of load and one obtained using flow-weighted mean concentrations can be 

established. These issues are covered under special cases 1-3 below. 

 

 

Special Case #1 – The Naïve estimator (average flow x 
average concentration) 
  

The simplest of all load estimators is a scaled product of the mean concentration and 

the mean discharge (flow). We refer to this as the ‘naïve’ estimator – its attractiveness 

lies in its computational simplicity, although serious biases (typically > 30%) result 

                                                 
7 It is recognised that this approximation does not take into account autocorrelation between the c and q 
data, nor the cross-correlations between them. See Appendix A for a derivation. 
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(Fox, 2004). The naïve estimator is readily seen to be obtained by letting 1
i

c

w
n

= and 

1
j

q

v
n

= giving 

 1̂L KC Q=      (7) 

and 

 

[ ]2

1̂
c q

K Var L
Var L

n n
⎡ ⎤ =⎣ ⎦    (8) 

 

 

 

Special Case #2 – Load estimator using flow-weighted mean 
concentrations and unknown total discharge 
 

Unlike the naïve estimator which assigns equal weight to each observed 

concentration, the flow-weighted mean concentration (fwmc) uses weights that are 

proportional to the magnitude of the associated flow. In this sense, the naïve estimator 

may be thought of as a time-based average whereas the fwmc is a flow-based average. 

It is implicit in flow-weighted averaging that the flow and concentration data are 

contemporaneous whereas no such assumption was previously made. Thus, 

c qn n n= = and the weights for fwmc are  

 

1

i
i n

i
i

qw
q

=

=

∑
;    1iv i= ∀  

Thus, 

2
1 1

1

1ˆ
n n

i i in
i i

i
i

L K c q q
q = =

=

⎛ ⎞⎛ ⎞′= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑

∑
     

 

2
1

ˆ
n

i i
i

L K c q
=

′= ∑      (9)  

where KK
n

′ =  (eg. if one month of daily concentration data are available to estimate 

an annual load using equation 9, then K=365 and n=30). The K ′ factor is needed in 
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this case because the total discharge, 
1

n

i
i

q
=
∑  is only known for the sample and not the 

entire period of interest. 

 

Furthermore, 

 

[ ]2
2 2

1

ˆ
n

i

i i

qVar L K n Var L
q=

⎛ ⎞
⎡ ⎤ ′= ⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
∑ ∑

 

 
[ ]2

2
2

1

1

n

in
i

i
i

K Var L
q

n q =

=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
∑

                  (10) 

 
Aside 
It can be readily established that in the case c qn n n= = , the variance of 2L̂ is greater 

than the variance of 1̂L . To see this, we look at 2 1
ˆ ˆVar L Var L⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦ . 

 

[ ] [ ]22
2

2 1 2 2
1

1

ˆ ˆ
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in
i

i
i

K Var LKVar L Var L q Var L
n

n q =

=

⎧ ⎫
⎡ ⎤ ⎡ ⎤− = − ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎛ ⎞ ⎩ ⎭

⎜ ⎟
⎝ ⎠

∑
∑

   

 

 [ ]
2

2 1
2 2

1

1

n

i
i

n

i
i

q
K Var L

n
n q

=

=

⎧ ⎫
⎪ ⎪
⎪ ⎪= −⎨ ⎬

⎛ ⎞⎪ ⎪
⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑
 

Hence, 2 1
ˆ ˆVar L Var L⎡ ⎤ ⎡ ⎤>⎣ ⎦ ⎣ ⎦ if  

2

1
2 2

1

1 0

n

i
i

n

i
i

q

n
n q

=

=

− >
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
 

 
2

2 1

1

0

n

in
i

i
i

q
q

n
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠⇒ − >
∑

∑  

 
which is always true since the last expression is the sample variance of the measured 
flows. 
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Special Case #3 – Load estimator using flow-weighted mean 
concentrations and known total discharge  
 
This case is identical to special case #2 with the exception that the fwmc is applied to 

the total (annual) discharge, 
1

K

i
i

q
=
∑ . Thus, the weights are as before except that the{ }jv  

weights span the period of interest (j=1,..,K) rather than the sample (j=1,..,n).  
 
 
Thus, 
 

1
3

1

ˆ

n

i i
i

n

i
i

c q
L Q

q

=

=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
     (11) 

 
where Q is the total (annual) discharge.  
 
Furthermore, 
 

[ ]
2

1
3 2

1

ˆ

n

i
i
n

i
i

K q
Var L Var L

q

=

=

⎡ ⎤ =⎣ ⎦ ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
     (12) 

 

Note, if we have sampling fraction ; 0 1nf f
K

= < <  then equation 10 can be 

written as 3
2

ˆ
ˆ Var L

Var L
f

⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦  and it is evident that 3 2
ˆ ˆVar L Var L⎡ ⎤ ⎡ ⎤<⎣ ⎦ ⎣ ⎦ .  

 
 

5. The duality of the fwmc load estimator and a 
ratio estimator 

 
Ratio estimation is a well known technique for potentially reducing the error 

(increasing the precision) of the estimate when an auxiliary variable that is correlated 

with the variable of interest is available. A full treatment of ratio estimators is given in 

Cochran (1977). In the present context, a ratio estimator is formed by assuming the 

ratio of the total load for the sample to the total discharge for the sample is the same 

as the corresponding quantities over the period of interest. That is 
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l L
q Q

=  

 Where l (L) is the sample (population) load and q (Q) is the sample (population) 

discharge. The ratio estimator is then 

 

ˆ
ratio

lL Q
q

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
     (13) 

 

Expanding equation 13, we have 

 

1 1

1

1

ˆ

n n

i i i i K
i i

ratio jn
j

i
i

w c v q
L q

q

= =

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= ⋅
∑ ∑

∑
∑

   (14) 

 

and letting 1iv i= ∀  and 

1

i
i n

i
i

qw
q

=

=

∑
 we see that 3

ˆ ˆ
ratioL L= . 

 

6. An Example 
 
We consider the estimation of the total phosphorous (TP) load in a drain (designated 

CG3) in Gippsland, Victoria during the 2004 irrigation season8. The availability of 

daily flow and TP measurements enables us to compute the ‘true’ load as 5,517.10 kg. 

A random sample of n=29 observations were taken and the results used to 

demonstrate the methods outlined in this paper. The parameters given in table 1 were 

estimated from the log-transformed flow and concentration data. 

Table 8. Parameters for log-flow and log-concentration 

 

 

                                                 
8 Data courtesy of Southern Rural Water 

 Log-Flow Log-Concentration 

µ  2.5561 -0.02834 

σ  0.6706 0.8008 

ρ  0.482 
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By substituting the parameter estimates in table 1 into equations (3) and (4) we obtain 

(using equation (4)) estimate the load variance to be [ ] 3132.863Var L = . We next 

obtain load estimates using methods 1-3. 

 

Method#1 

Our data yield: 29n = , 
1

1 1.17225
n

i
i

c c
n =

= =∑ , and 
1

1 11.4015
n

i
i

q q
n =

= =∑ . The 

duration of the irrigation season is such that K=279 days. Thus 

 1̂ (279)(1.17225)(11.4015) 3728.95L = = kg 

Compared to the ‘true’ load of 5517.10kg, 1̂L  is seen to underestimate the true load 

by 33%.  This overestimation is a consequence of the high (positive) correlation 

between log-concentration and log-flow. A bias correction factor (Fox 2004) can be 

applied in attempt to reduce this effect. In this case an improved estimate is obtained 

by multiplying 1̂L by [ ]{ } ( )exp ln , ln exp 1.2954c qCov C Q ρσ σ= = . This gives a 

modified total load of 4830.5kg which has reduced the bias to 13%. 

 

From equation (8) we have 

[ ]
2

1
279ˆ 350220.28

(29)(29)
Var L Var L⎡ ⎤ = =⎣ ⎦  

and hence 1 1
ˆ ˆ 591.8SE L Var L⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ . 

 

Method#2 

From equation (9) 
 

29

2
1

ˆ
i i

i

L K c q
=

′= ∑  

279 (434.410) 4179.32
29

= = kg. 

 
Compared to the ‘true’ load of 5517.10kg, 2L̂  is seen to underestimate the true load 

by 24%.  From equation (10) we have 



Fox, Etchells, and Tan: Protocols for the optimal measurement of nutrient loads 
 

 
AUSTRALIAN CENTRE FOR ENVIRONMETRICS      PAGE 124 

[ ]2 29
2

2 229
1

1
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(29)
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i
i

i
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Var L q
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=

⎡ ⎤ =⎣ ⎦ ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
∑

 

2

2

279 (4553.11)(3132.863) 350220.28
29 330.643

= =  

 

and hence 2 2
ˆ ˆ 591.8SE L Var L⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ . 

 

Method#3 

 

From equation (11) 
 

[ ]

29
2

1
3 229

1

ˆ
i

i

i
i

q
L K Var L

q

=

=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
 

 

2

279(4553.11)(3132.863) 36402.82
330.643

= = kg. 

 
Compared to the ‘true’ load of 5517.10kg, 2L̂  is seen to underestimate the true load 

by 24%.  From equation (10) we have 

[ ]2 29
2

2 229
1

1
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i

i
i

i

Var L
Var L q

q =

=

⎡ ⎤ =⎣ ⎦ ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
∑

 

2

2

279 (4553.11)(3132.863) 36402.82
29 330.643

= =  

 

and hence 3 3
ˆ ˆ 190.8SE L Var L⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ . 
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Appendix A – Derivation of Equation 6 

 
 
Equation (1) can be written in matrix notation as ( ) ( )ˆ 1 1L K Wc Vq= T T . Observe that 

the term inside each bracket is a scalar and hence ˆ ˆTL L= . Thus 
 

 
( ) ( )ˆ 1 1T T TL K c W Vq=  

( )11T T TKc W V q=  
TKc Aq=  

 
where 11T TA W V= .  Since the trace of a scalar is the scalar itself, we have   
 

( ) ( ) ( )T T Tc Aq tr c Aq tr Aqc tr AB= = =  
 

where TB qc= . 
 
Now A can be written as the product of two vectors, TA wv=  where the vectors w and 

v are each of length n and are zero except for the sampled days, (for concentration and 

flow respectively), when they contain the respective weights for those sampled days.  

So the (i, j) element of A is the product of the sample weights when i is in I and j is in 

J, and 0 otherwise.  The matrix B is also the product of two vectors, so ,i j i jB q c= . 

Now, ( )
1 1

n n

ij ji
i j

tr AB a b
= =

= ∑∑  and so ( ) i j i j
i I j J

tr AB w v c q
∈ ∈

= ∑∑ hence 

 
( ) ( )2

2 ,i j i j i j i j
i I j J i I j J i I j J

Var tr AB w v Var c q Cov c q c q′ ′
′ ′∈ ∈ ∈ ∈ ∈ ∈

⎡ ⎤ ⎡ ⎤= +⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑∑ ∑∑∑∑  

 
Equation (6) is obtained by assuming the covariances in the expression above are 

zero. While this is not unreasonable for daily loads well separated in time, it is 

unlikely to be true on short time scales, in which case equation (6) will most likely 

underestimate the true variance (since loads will tend to be positively correlated). 
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