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Abstract—Time is a central component of toxicity assessments. However, current ecotoxicological practice marginalizes time in
concentration–response (C-R) modeling and species sensitivity distribution (SSD) analyses. For C-R models, time is invariably fixed,
and toxicity measures are estimated from a function fitted to the data at that time. The estimated toxicity measures are used as inputs to
the SSD modeling phase, which similarly avoids explicit recognition of the temporal component. The present study extends some
commonly employed probability models for SSDs to derive theoretical results that characterize the time-dependent nature of hazardous
concentration (HCx) values. The authors’ results show that even from very simple assumptions, more complex patterns in the SSD time
dependency can be revealed. Environ. Toxicol. Chem. 2013;32:xxx–xxx. # 2012 SETAC
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INTRODUCTION

The species sensitivity distribution (SSD) has been an
important development in ecotoxicology. Its reliance on stat-
istical principles rather than arbitrary assessment factors placed
toxicity assessments on a more rational and, arguably, a defen-
sible basis. However, several concerns have been raised with
regard to various aspects of the SSD methodology, including
but not limited to (1) underlying assumptions, such as the
neglect of trophic structures and the representativeness of the
sample data [1], and (2) computational aspects of the SSD
process, such as the appropriateness of distributional form [2–6]
and the incomplete and/or inappropriate treatment of uncer-
tainty [7,8]. Here, we wish to draw attention to another facet
of SSD modeling that hitherto has received relatively little
attention—the temporal component.

Time is a key component of ecotoxicological studies [9,10],
and its impact on the derivation of toxicity measures is attract-
ing increasing attention [11,12]. For example, toxicokinetic and
toxicodynamic (TKTD) models describe physical and chemical
processes within organisms (see [13,14,15] for reviews),
whereas less complex models are used to describe the relation-
ship between concentration and response (concentration–
response [C-R] curves), which are in turn used to generate
the data for SSD modeling. Despite the trend toward the use of
increasingly sophisticated statistical methods in SSDs [7,16–
18], the temporal component of SSDs has not been incorporated
in any unified manner. To our knowledge, only one study [19]
examined the temporal pattern of SSDs from TKTD models
applied to five species.

The inputs to an SSD are toxicity measures derived
from experimental data, typically those generated from C-R
experiments. Important considerations in the design of a C-R
experiment center on the choice of endpoint (e.g., mortality,
growth, reproduction), the dependent variable (e.g., survival

rate, length, weight, number of offspring), and the set of
concentrations to be used. Standard protocols often dictate
most, if not all, design aspects including the duration of the
experiment or the time at which the measurements of the
endpoint are to be taken (e.g., recording survival numbers after
24, 48, or 96 h). For some C-R experiments, the duration of the
experiment is predicated on biological considerations (such as
model-species life cycle), whereas, in other cases, the duration
is set somewhat arbitrarily and as a matter of convenience.

The nexus between time (as a duration) and toxicity is
axiomatic in the definitions of acute and chronic, yet its
importance is never accounted for in any meaningful way in
subsequent SSD modeling. Indeed, all reference to time is lost
in the SSD fitting process and, consequently, derived toxicity
measures and hazardous concentrations (HCs) are treated as
time invariant, something they clearly are not. When chronic
data is insufficient to obtain reliable chronic toxicity measures,
we reintroduce a temporal component by scaling acute toxicity
measures using acute-to-chronic ratios [20]. This approach
lacks scientific rigor and is a clumsy way of acknowledging
the temporal dimension of toxicity measures and, by implica-
tion, SSDs and HCs.

Another approach developed by the U.S. Environmental
Protection Agency (U.S. EPA) is to estimate chronic toxicity
using the time course of mortality as determined from acute
toxicity tests with several acute time points and hyperbolic time
models [21–24]. We do not discount the utility of these studies,
but the focus on acute-to-chronic conversions [25–27] might
have distracted us from the more important task of developing a
unified approach that explicitly recognizes time rather than
marginalizing it.

We restrict our attention here to the single issue of time
dependence in SSDs and its influence in the determination of
HC values. Our motivation arises from two observations: (1)
time is important, if for no other reason than that it differentiates
between acute and chronic toxicity measures, and (2) the test
duration of a C-R experiment is often arbitrary and sometimes
has as much to dowith logistics, cost, and convenience as it does
with biology, thereby rendering the classification of the result-
ing toxicity measure as either acute or chronic rather imprecise.
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It is therefore of interest to gauge the potential impact on SSDs
and HC values as a result of this incomplete and somewhat
arbitrary treatment of time.

To assist with this assessment, we derive mathematical
expressions for HCs derived from log-normal and log-logistic
SSDs in which the parameters of the distribution are functions
of time. We recognize that the results of these analyses are
necessarily limited to the choice of SSD and the manner in
which the temporal dimension has been incorporated and there-
fore may not be universally applicable. However, we believe
that this is the first time an attempt has been made to character-
ize time dependency in HC values mathematically, and as such
we believe the insights obtained are valuable and will lead to a
better appreciation of the role of this parameter and of the
potential consequences of ignoring it.

MATERIALS AND METHODS

One of the drawbacks of the SSD paradigm is the indeter-
minate nature of the functional form of the SSD, because there
is no biological or statistical theory that guides the choice of an
appropriate probability model. Although this indeterminacy
provides the analyst with ample scope to fit any reasonable
probability model to a collection of toxicity values, the down-
side is that different results can be obtained when different
distributions are used to estimate quantities (e.g., HCs) from the
SSD [2,4,5]. This fundamental limitation will also frustrate
attempts to develop generic advice or recommendations regard-
ing the treatment and/or impacts of time in SSD modeling.
Nevertheless, we believe an initial first look into the time-
varying nature of the HCs based on two commonly used
probability models in SSD modeling, the log-normal and the
log-logistic, may provide useful insights.

Species sensitivity distributions rely on the assumption that
aquatic species of a community or assemblage differ in their
sensitivity to a hazardous chemical. Toxicity values are used
as indicators of the sensitivity and are assumed to follow a
theoretical distribution accounting for the interspecies varia-
bility. The canonical form of an SSD is the cumulative dis-
tribution function (cdf) which represents the fraction of affected
species (from 0 to 1) as a function of toxicant concentration.
To introduce a temporal component, we define the random
variable Mt as the toxicity value of a randomly selected species
at time t.

Log-normal model

In this case, we assumeMt � logNorm mt; s
2
t

� �
. From stand-

ard statistical distribution theory, we have

E½Mt� ¼ exp mt þ
1

2
s2
t

� �
(1)

and

Var½Mt� ¼ exp 2mt þ 2s2
t

� �� exp 2mt þ s2
t

� �
(2)

for the (theoretical) mean and variance, respectively. After some
algebra, we can show that

mt ¼ lnðE½Mt�Þ � 1

2
ln 1þ Var½Mt�

E½Mt�ð Þ2
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¼ ln E½Mt�ð Þ � 1
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and

s2
t ¼ ln 1þ Var½Mt�

E½Mt�ð Þ2
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¼ ln 1þ ðCV½Mt�Þ2
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(4)

where

CV ½Mt�ð Þ2 ¼ Var½Mt�
E½Mt�ð Þ2

is the squared coefficient of variation of the toxicity measureMt

Thus, by fixing two of the quantities E[Mt], Var[Mt], or
CV[Mt], we can examine the time-dependent behavior of the
SSD and hence of its quantiles. Letting (HCx)t denote the
concentration that is hazardous for fraction x of all species at
time t, we have

HCxð Þt ¼ exp mt þ stF
�1ðxÞ� �

(5)

where F�1 �ð Þ is the inverse standard normal cumulative
distribution function.

Log-logistic model

In this case, we assume Mt � logLogistic at;btð Þ. From
standard statistical distribution theory, we have

E½Mt� ¼ at
p=bt

sin p=btð Þ (6)

and

Var½Mt� ¼ a2
t

2p=bt

sin 2p=btð Þ �
p=btð Þ2

sin2 p=btð Þ

 !
with bt > 2 (7)

for the (theoretical) mean and variance, respectively. After
some algebra, we can show that

at ¼ E½Mt� sin p=btð Þ
p=bt

(8)

and

tan p=btð Þ
p=bt

¼ E Mt½ �2 þ Var Mt½ �
E Mt½ �2 ¼ 1þ CV Mt½ �2 (9)

1þ CV Mt½ �2 > 1 and bt > 2; therefore, p=bt < p=2. Let ut
be p=bt

lim
u!0þ

tanðutÞ
ut

¼ 1 and lim
u! p

2ð Þ�
tanðutÞ

ut
¼ þ1

where
tanðutÞ

ut
is a monotonously increasing function of ut

between 0 and p
2
. Hence, there is a unique solution for

tanðutÞ
ut

¼ 1þ CV Mt½ �2. Equation 8 can be solved by iteratively
running until convergence u� ¼ arctanðð1þ CV Mt½ �2Þu�Þ, with
u� ¼ p=bt.

Thus, by fixing two of the quantities E[Mt], Var[Mt],
or CV[Mt], we can examine the time-dependent behavior of
the SSD and hence of its quantiles. As before, (HCx)t is the
concentration that is hazardous for fraction x of all species at
time t>, so we have the following

HCxð Þt ¼ at
x

1� x

� �1=bt
(10)

With these equations, we can examine the effect of different
time models for E[Mt] and CV[Mt] on the derived (HCx)t value.
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According to bioaccumulation kinetics models, toxicity values
are expected to decrease with time until toxicity saturation
occurs [13,28]. Acute-to-chronic ratios are a crude character-
ization of this time dependence, because they can be viewed as

realizations of
Mshort�term
Mlong�term

and are typically greater than one [29].

Empirical evidence for decreasing toxicity values with time is
also available. For example, an analysis of toxicity data reported
in Table 3 of Duboudin et al. [27] showed that, for vertebrates,
the acute-to-chronic ratio (ACR) was greater than unity for all
22 substances tested. For invertebrates, the ACR exceeded unity
for all 15 substances tested. To explore this dependence further,
we have used three monotonically decreasing functions of Mt

in time. Each of these simple functions is governed by two
parameters, a and b. The parameter b controls the rate of
decrease in mean toxicity to an asymptotic value, a. The three
models are as follows: model EV1 is E Mt½ � ¼ aþ expð�btÞ;
model EV2 is E Mt½ � ¼ aþ 1

bt; and model EV3 is E Mt½ � ¼
a

1�expð�btÞ .
Model EV2 is also known as Green’s model [30] and is used

in the U.S. EPA acute-to-chronic estimation software [23,24].
Model EV3 arises from mechanistic assumptions of toxicity
proportional to the concentration of the compound in an animal
using one-compartment bioaccumulation kinetics [13,31]. It is
sometimes referred to as a baseline toxicity model [13].We note
that these models were intended primarily to describe the time
dependence of toxicity values at the level of a species, whereas
we have used them to describe the expected value of toxicity for
an infinite number of species.

The identification of a suitable model to describe the time-
varying behavior of the coefficient of variation of toxicity is less
straightforward. According to Kooijman [28], chronic toxicity
values are expected to vary less among species than acute
toxicity values, which implies a time-decreasing model for
CV[Mt]. However, De Zwart [26] notes that the slopes of acute
and chronic SSDs do not significantly differ from each other. An
examination of the empirical evidence of Duboudin et al. [27]

showed that, for vertebrates, the ratio
CV Macute½ �
CV Mchronic½ � was greater

than unity for 17 of the 22 substances examined, whereas for
invertebrates, this was the case for 13 of 15 substances. In view
of these equivocal findings, we have examined both a time-
invariant model and a time-decreasing model for the coefficient
of variation in toxicity values. Specifically, model CV1 is
CV Mt½ � ¼ c, and model CV2 is CV Mt½ � ¼ cþ expð�dtÞ, where
c is strictly positive because a zero value for this parameter
implies no interspecies variability in toxicity (and hence no
basis for SSD modeling) either absolutely (if c¼ 0 in model
CV1) or asymptotically (if c¼ 0 in model CV2).

The incorporation of time means that the SSD is now a
surface rather than a curve. A typical example is shown in
Figure 1. For fixed fraction x, the (HCx)t value would be derived
in the usual manner from the curve, which results from taking
a slice through Figure 1 at time t. Repeating this process at
different times allows us to explore the time dependence in
hazardous concentrations.

RESULTS

Figure 2 shows results obtained under the assumption of time
invariance in the coefficient of variation (model CV1). In this
case, the HCs are time decreasing irrespective of the chosen c.
We obtained very similar results for log-normal and log-logistic
SSDs. The shape of the curves differs slightly depending on
which of the time models for mean toxicity is used (model EV1,

EV2, or EV3). Nevertheless, all models reveal the same general
features: (1) an asymptotic HCx as E[Mt] tends to a, and (2)
larger values of c result in smaller HCx values.

Under the assumption of a time-decreasing coefficient of
variation (model CV2), again we obtained very similar results
for log-normal and log-logistic SSDs. Various patterns were
observed for the time dependence of HCx. As an example,
results obtained with c¼ 0.5 and d¼ 1 are shown in Figure 3.
For those parameter values, depending on the model used for the
expected value, we observed a monotone increasing pattern for
all highlighted HCx (EV1), a monotone decreasing HC50, and a
pattern displaying a maximum for low-order HCx (EV2) or a
monotone increasing pattern for low-order HCx and a pattern
displaying a minimum for HC50 (EV3). Notice that all HCs
tend to the same asymptotic values as E[Mt] tends to a and
CV[Mt] tends to c.

As expected from Equation 5, the shape of the HCs time
course is a trade-off between the affected fraction x, the time
models for CV[Mt] and E[Mt], and their parameter values.
Parameters b and d, which control the rate of decrease in
CV[Mt] and E[Mt], respectively, have antagonistic impacts
on HCs, because low-order HCs increase with decreasing
variability and decrease with decreasing mean. This is high-
lighted in Figure 4, in which the impact of d on HC1 is examined
under model EV3. When d is high (d¼ 4 in this example), the
interspecies variability decreases faster than the mean, and the
time course of HC1 is governed mostly by the time-decreasing
model assumed for E[Mt]. In contrast, when d is low (d< 2 in
this example), the time course of HC1 is dominated mostly by
the time-decreasing model assumed for the variation among
species.

DISCUSSION

The present study has examined the important issue of time
dependence in species sensitivity distributions. We have not
sought to compare different approaches to handling time; rather,
our aim has been to highlight the arbitrariness of simple scalings
such as the acute-to-chronic ratio and the subsequent lack of
any comprehensive treatment of the temporal component in
standard SSD methodologies. Interestingly, the ecotoxicology

Fig. 1. 3Dspecies sensitivitydistribution (SSD).Fractionofaffected species
as a function of time and concentration. The fractions 50, 10, 5, and 1% are
highlighted.
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Fig. 2. Relationship between hazardous concentrations (HCs) and time derived from log-normal (top) and log-logistic (bottom) species sensitivity distributions
(SSDs) when CV[Mt] is time constant (c¼ 0.5): model EV1 (left), model EV2 (middle), and model EV3 (right) with a¼ 2.5 and b¼ 1.5.

Fig. 3. Relationship between hazardous concentrations (HCs) and time derived from log-normal (top) and log-logistic (bottom) species sensitivity distributions
(SSDs) when CV[Mt] is time decreasing (c¼ 0.5 and d¼ 1): model EV1 (left), model EV2 (middle), and model EV3 (right) with a¼ 2.5 and b¼ 1.5.
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community now tends to use dynamic models (e.g., TKTD
models [9–12]) in an attempt to represent and understand better
the temporal dynamics at the single-species level, and this
approach is also acknowledged as the way forward in regulatory
guidelines [32,33].

We have derived some general results for commonly used
distributions in species sensitivity distribution modeling, and
these have provided useful insights that should motivate further
research into and development of this important aspect of
ecotoxicological practice.

Our results and insights are derived primarily from mathe-
matical arguments rather than the analysis of a specific data set
and are therefore potentially more generalizable provided that
relatively weak assumptions are met in practice. For example,
Kooijman [28] suggested that ‘‘chronic median lethal concen-
tration (LC50) are expected to vary less among species than
acute ones. This reduction in scatter is expected to greatly
overcompensate for chronic LC50 being less than acute ones in
the calculation of hazardous concentration for sensitive spe-
cies’’ (i.e., low-order HCs would increase with time because
they are dominated mostly by time-decreasing variation among
species), but they did not substantiate this belief. In contrast,
Smit et al. [19] presented results in which HCs decreased with
time (which we conjecture to be a consequence of the HC’s time
course being dominated by the time-decreasing mean of the
input toxicity measures). Not only has the present study shown
both observations to be correct but, in addition, we have
characterized the trade-off between time-decreasing CV and
time-decreasing mean of input toxicity measures that underlies
the resulting temporal behavior of HCx values.

We have shown that the temporal component of SSD
modeling cannot be ignored, because critical quantities such
as the HCx are not time invariant. Furthermore, the explicit
incorporation of time as a functional parameter results in a more
holistic description of the SSD and leads to a more informative
characterization of the time–toxicity continuum. In addition,
our analyses have provided key insights into the temporal
behavior of HCx values as a function of time-varying patterns
in the CV of the input toxicity data. We see this as an important
development for which no analytic results have been previously
derived.

For the cases considered, we have shown that, when the CV
is constant over time, the HCx decreases monotonically to a
stable, asymptotic value. This accords with general observa-
tions and the understanding that a chronic HCx is smaller than

an acute HCx. Our results have also revealed some less obvious
and more complex relationships among HCx as a function
of time, CV, and x, and these held true for both the log-normal
and the log-logistic SSDs. Though much work remains to be
performed, we believe that the present study makes a small but
valuable contribution to an improved understanding of the
temporal dimension of SSDs.
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