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1. Introduction 
Since the events of September 11 2001, there has been increased emphasis on monitoring and 

surveillance to detect and prevent further terrorist attacks. While significant resources have been devoted to 
the mechanics of screening, far less attention has been paid to quantifying the efficacy of these surveillance 
programs. Unlike the industrial setting where there is generally good information on the performance of the 
manufacturing process (eg. percent defective; proportion of non-conforming or ‘out-of-spec’ items), 
monitoring in the context of bio / homeland security is characterised by extreme uncertainty. 

In contrast to traditional methods of (constrained) optimisation, Ben-Haim (2006) developed Info-Gap 
theory to identify robust solutions to decision-making problems under extreme uncertainty. Info-gap theory 
has recently been applied to assessing the performance of counter-terrorism surveillance programs (Moffitt et 
al. 2005) and the identification of robust strategies to deal with bioterrorism attacks (Yoffe and Ben-Haim  
2006). Thompson (unpublished) examined the general sampling problem associated with inspecting a 
random sample of n items (containers, flights, people, etc.) from a finite population of N such items in a 
biosecurity context using an info-gap approach. The basic situation considered is that there is a 
probability ( )p n of a catastrophic outcome (eg. terrorist attack) given that n events / items out of N have been 
inspected. Thompson’s (unpublished) info-gap formulation of the problem permitted the identification of a 
sample size n such that ( )p n did not exceed a nominal threshold, cπ when severe uncertainty 
about ( )p n existed. Implicit in this formulation was the assumption that the detection probability (ie. the 
probability of detecting a weapon, adverse event, anomalous behaviour etc.) once having observed or 
inspected the relevant item / event / behaviour was unity. In the context of counter-terrorism, our 
uncertainties (or info-gaps) will most certainly extend to a lack of certitude in detection.  

In the following sections we describe the general surveillance problem for which the probability of 
detection is less than unity. We then provide an info-gap formulation to help identify sampling strategies that 
are robust to multiple sources of uncertainty – including the detection probability.  

2. Surveillance with imperfect detection 
Following Thompson (unpublished), we assume that there is a finite population of N objects, events, 

people, or behaviours that are potentially subject to inspection. From this population of N ‘objects’ a random 
sample of size n is to be inspected.  We define the following events: 
 

 I – the event that an object is inspected; 
W – the event that an object is a security threat (eg. the object is a weapon, the person is a 

terrorist, the behaviour is indicative of malicious intent); 
 D – the event that the security breach is identified / detected. 

Furthermore, we assume that only inspected objects are classified as either belonging to D or D .  
In a biosecurity / counter-terrorism context, arguably, the most important probability is not [ ]P W (the 

probability of a security threat) but rather it is the conditional probability P W D⎡ ⎤⎣ ⎦  ie. the probability of a 

security threat given that no breach of security was detected. 
 

BULLETIN of THE INTERNATIONAL STATISTICAL INSTITUTE - LXII (2007)

- 5562 -



The lack of detection of a security breach is due to: (i) the absence of a security threat; and/or (ii) 
imperfections of the detection equipment / method/ process. Our inability to distinguish between (i) and (ii) 
is an info-gap. 

Problem formulation 
From elementary probability theory: 

P W D
P W D

P D
=

⎡ ⎤⎣ ⎦⎡ ⎤⎣ ⎦ ⎡ ⎤⎣ ⎦

∩
    (1) 

 
Now, [ ] [ ] [ ]P W D P I P D W P W P D W P W P D W P W= − − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦∩     (2) 

Note that 1P D W =⎡ ⎤⎣ ⎦  and 0P D W =⎡ ⎤⎣ ⎦ . 

We next define the detection efficiency, θ  as [ ]P D W i.e. the probability that a security breach will 

be detected given a threat actually exists. Furthermore, we let [ ]P Wφ = be the unconditional probability that 

an object is a security threat and [ ] nP I Nλ = = the inspection fraction or probability. It can be shown that 

equation (1) can be written as  
( )

( ) ( )
( ), ,

1
P W D p

φ λ θ
λ θ φ

φ λ θ φ
−

= =
− + −

⎡ ⎤⎣ ⎦     (3) 

Notice that for the probability in equation (3) to be non-negative λ θ≥  i.e the sampling fraction must be at 
least as large as the detection efficiency.  Note, that when 100% inspections are performed, the conditional 
probability in equation (3) becomes 

( )1
(1, , )

1
P W D p

φ θ
θ φ

θφ
−

= =
−

⎡ ⎤⎣ ⎦     (4) 

and under these conditions, this probability is only zero when the detection efficiency is 100%. For 
0% detection efficiency (1,0, )p φ  is φ  - the unconditional probability that the object is a security 
threat. Furthermore, whenever the inspection rate is 100%≤ , ( ), ,p λ θ φ underestimates (1, , )p θ φ . This 
underestimation may be regarded as the ‘cost’ associated with less than complete inspection. We 

thus define our performance criterionΨ to be the ratio ( )
( )

, ,
1, ,

p
p
λ θ φ
θ φ

, thus 

( ) ( )
( ) ( ) ( )

1
, ,

1 1
φ λ θ θφ

λ θ φ
φ λ θ φ φ θ

− −
Ψ = ⋅

− + − −
    (5) 

We next consider an info-gap formulation to assess the effects of uncertainty in key parameters 
(namelyθ andφ ) on the performance criterion given by equation (5). 

3. An Info-Gap model for surveillance performance 
Information-gap (hereafter referred to as info-gap) theory is a recent development designed to assist 

decision makers faced with severe uncertainty (Ben-Haim 2006, Regan et al. 2005, Carmel and Ben-Haim 
2005).  Info-gap theory aims to address the “robustness” of decision making under uncertainty.  It asks the 
question: how wrong can a model and its parameters be without jeopardising the quality of decisions made 
on the basis of this model?  

Info-gap theory derives its robustness functions from three elements: a performance measure, a process 
model and a non-probabilistic model of uncertainty. The performance measure is a statistical, economic or 
bio-physical metric of value to the decision maker.  The decision maker may wish to increase the 
performance measure (e.g. dollar value of a share portfolio) or reduce it (e.g. probability of not detecting a 
terrorist attack).  In each case there is often a critical performance value which defines a change in decision. 
In our case, the performance measure is Ψ  - effectively the reduction in surveillance efficacy when less than 
100% inspection is employed.  
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The process model is a mathematical summary of the system in question.  It describes the relationship 
between the performance measure and the important characteristics of the system in question.  In this 
example the performance threshold is the maximum tolerable reduction in surveillance efficacy and the 
process model is given by equation (8).  

The info-gap model of uncertainty for the uncertain quantities Θ in the process model is the unbounded 
family of nested sets �( ),U α Θ  of possible realisationsΘ , where α  represents the unknown “horizon of 

uncertainty” and �Θ  our best or initial estimate ofΘ .  This model satisfies two axioms: 
contraction: ( ) { }0,U Θ = Θ� �    (6) 

nesting: ( ) ( ), ,U Uα α α α′ ′< ⇒ Θ ⊂ Θ� �    (7) 

The contraction axiom states that in the absence of uncertainty ( )0α = , our best estimate �Θ is 
correct, while the nesting axiom states that the range of uncertain variation increases as the horizon of 
uncertainty increases.  In all cases α is unknown and unbounded with 0α ≥ .  In this example the uncertain 
quantities are the detection efficiencyθ andφ , the probability that an object is a security threat. Thus, 

( ),θ φΘ =  and our initial or best estimate of these parameters is denoted � { },θ φΘ = � � .  

In this section we consider uncertain parameter values – the detection efficiencyθ and the probability that an 
object is a security threat, φ . The fractional errors ( ) /θ θ θ− � � and ( ) /φ φ φ− � � are unknown. With this prior 

information we formulate the following fractional-error info-gap model: 
 

( )
( ) ( ) ( )

( ) ( )

, :       max 0, 1 min 1, 1
, , ,      0

                 max 0, 1 min 1, 1
U

θ φ α θ θ α θ
α θ φ α

α φ φ α φ

− ≤ ≤ +
= ≥

− ≤ ≤ +

⎧ ⎡ ⎤ ⎡ ⎤⎫⎪ ⎣ ⎦ ⎣ ⎦⎪
⎨ ⎬

⎡ ⎤ ⎡ ⎤⎪ ⎪⎩ ⎭⎣ ⎦ ⎣ ⎦

� �
� �

� �   (8) 

This is a bounded family of nested sets of { },θ φ� � values with the sets becoming more inclusive as the horizon 

of uncertainty,α  increases.  The definition of the performance measure, process model and uncertainty 
model(s) completes the specification of the formulation of the info-gap analysis.   

We now turn to the derivation of the robustness function.  In info-gap parlance “robustness” is 
defined as the greatest horizon of uncertainty, across all uncertain model components, such that the 
performance measure still meets the pre-defined requirement.  In our application the robustness of a 
surveillance regime in which λ x100% of the target population is inspected, is the greatest horizon of 
uncertainty �α  for which all combinations of the uncertain parameters � { },θ φΘ = � �  the minimum required 

inspection performance is achieved, that is 

� ( )
( ) ( )

( )
, , ,

, max : min , ,d d
Uθ φ α θ φ

α λ γ α λ θ φ γ
∈

= Ψ ≥⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭� �
   (9) 

where dγ is the required value of Ψ .  Equation (9) is the robustness function for this application of the info-
gap model. The strategy of robust-satisficing (Ben-Haim 2006) is to attempt to guarantee an adequate level 
of surveillance performance, by choosing a value of λ which is highly robust to uncertainty. Thus, for any 
inspection fractionλ , the robustness function indicates the confidence in attaining the minimum performance 
requirement with thatλ . Examination of the process model (equation 5) reveals that it is a monotonic 
decreasing function with respect to θ and a monotonic increasing function with respect toφ . Combining this 
observation with the uncertainty model (equation 8) allows us to write the inner minimum of the robustness 
function (equation 9) as 

( ), , , dh α λ θ φ γ≥      (10) 

where      ( ) ( ) ( )[ ]
( ) ( )[ ] ( )[ ]

( )
( ) ( )[ ]

21 11 1
, , ,

1 1 1 1 1 1 1
h

α θφα φ λ α θ
α λ θ φ

α φ λ α θ α φ α φ α θ

− −− − +
= ⋅

− − + + − − − − +
                 (11) 
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4. Illustrative Example 
Suppose new intelligence suggested that a terrorist attack of an aircraft was imminent and that the mode 

of attack was thought to involve a previously undetected chemical woven into the fabric of a passenger’s 
clothes. The exact nature of the chemical is unknown and hence no test is available to detect it. Airport 
security staff have no clear idea what they are looking for except that the have been instructed to closely 
monitor the appearance, texture, and integrity of passengers’ clothes. Our best guess of the parameters 
� { },θ φΘ = � �  is 0.7φ =� and 0.05θ =�  although considerable uncertainty exists around these figures. Figure 1 

plots the performance function ( ), ,λ θ φΨ as a function of robustness for a range of λ values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Robustness of surveillance performance for various sampling fractions (lambda). 

In recognition that 100% detailed inspection of all passengers is not feasible, a reduced level of 
surveillance will be tolerated provided the reduction in performance (relative to complete inspection) is no 
less than 25%. The dashed horizontal line in Figure 1 is thus our minimum performance requirement. To 
meet this performance requirement a minimum of 50% of passengers will have to be screened. At this level 
of screening, the robustness to uncertainty is zero and hence, if our initial estimates of the probability of an 
attack or of the detection probability are wrong, the performance requirement will not be met. Increasing the 
surveillance rate to 60% results in 20% robustness, while a surveillance rate of 70% will guarantee the 
performance requirement is met even if our initial guesses for the parameters are in error by 50%. 
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