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CHAPTER III

MULTIVARIATE MODELS

3.1 INTRODUCTION

This chapter represents an extension to the calibration problem in
the simple univariate case. We now examine calibration procedures for an
unknown q-vector‘ X when a p-vector Y has been observed. Whilst the
simple calibration problem has a long history, the same is not true of
the mnultivariate extension. In 1982 Brown presented a number of
important results for the multivariate calibration problem for both the
classical approach and also from a Bayesian perspective. Other papers
have since appeared although the multivariate aspect of the calibration
problem has been relatively slow to develop.

Oman and Wax (1984) gave an example of how multivariate calibration
could be used to improve the quality of estimation of the gestational
age of an unborn child. Standard practice is to compare the rate of
fetal development with published charts and tables. Such quantities as
bone lengths (femur length, F and biparietal diameter ,BPD) are usually
used. However, the comparison of each measurement separately with its
respective 'standard' value ignores the relationship between all three
factors (age, F, and BPD). The authors demonstrated that a model which
took cognizance of the covariance structure of all three variables

resulted in an index of gestational age which was significantly more
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accurate than the use of either alone. Notice that in this example both
F and BPD are dependent, although our future interest centers on
determining age from measurements on F and BPD.

Other applications of multivariate calibration have included a
method by Spezzaferri (1985) for choosing among K different calibration
experiments associated with K different instruments and applications in
remote sensing [O'Muircheartaich and Gaver (1986)] and chenmistry
[Sjostrom et.al.(1983)]. The problem of detecting influential
observations in a calibration experiment has been touched on (e.g. Onan
(1984) and Spiegelman (1984)) although most of this work has
concentrated on the univariate case. Applications to the multivariate
setting are examined in section 3.6

We commence our treatment of multivariate calibration with the
development of fundamental equations for both the classical (m.l.e.) and
inverse approaches. The orthogonal estimator developed for the
univariate model of Chapter I is also extended to the cover multivariate
analyses. Monte-Carlo methods are employed to compare properties of the
classical,inverse, and orthogonal estimators. The problem of conditional
calibration has hitherto not been examined. Development of the necessary
theory and illustrative examples are provided. Discrete multivariate
calibration has similarly received little or no attention in the
literature and in section 3.7 a procedure is developed for factorial
experiments. Implications for fractional factorial designs are also
examined. Finally, the problem of calibrating when there is only one
dependent variable but more than one potential regressor is available is

reviewed. This model is a hybrid of the univariate and mnultivariate §
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approaches and has received little attention in the literature.
3.2 THE THEORY OF MULTIVARIATE CALIBRATION.
We have as our assumed model :
Y=1a +X8+ ¢ (3.1)

where Y is (n x p) ; 1 is (n x 1) vector of ones;
ais (p x1) ; Xis (nx q ;
Bis (¢ x p) ; §is (nxp) .

Furthermore, assume § ~ Np(O,Ey) .In the subsequent development we will
assume that both the X and Y data have been centered on their respective

means and hence equation (3.1) reduces to Y =X8+ & .

3.2.1 THE INVERSE ESTIMATOR.

Inverse estimation is perhaps the easiest and most straightforward
approach. It is mentioned in passing that if the q components of X
cannot be considered random then the same criticisms arise as for the
univariate case. Brown (1982) notes that if both X and Y are random then
there is no preferred method and both regression of X on Y and Y on X

are equally valid. For the inverse regression we have

X=Yy+ ( (3.2)
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where 74 is a (p x q) matrix of parameters for the regression of X on Y.

The GLS estimator for < is thus

~

Ta-{. .=l Tno-1
y=(Y 8, V) Y& X (3.3)

where Qx is a positive definite, symmetric matrix with

COV[C1£]] = Gijﬁx.

The covariance matrix of 7 is

1

Coviyy, ;) = 65,00 D" (3.4)

Note, under OLS conditions Qx = I ,and equation (3.4) reduces to the
-1
more familiar 5ij(YTY) .
In calibrating for an unknown X-vector we assume we have a p-vector

of responses y, = [yo‘,y”,...,yop]T and thus

R ;A
Xo =¥p 7
T T T
= [y | Yo7 | -+ ] ¥o7 ] (3.5)
with
- ~ -] -1
COV[xoi ij] = 61] Y;(YTQX Y) YO (3.6)

3.2.1.1 Confidence Intervals.

Under the assumption of multivariate normality the calibrated X, is




Fox, D.R. Statistical Calibration: Theory and Applications PhD Dissertation

87

distributed as :
Nq[7Tyo,y;(YTﬂ;‘Y)_lyozgl
where
%, = 16
and
nﬁx is distributed independently with Wishart
distribution Wp-p(-|3,) where f& = % iTZ.

2
Hotelling's T statistic is therefore

| ) L
ot . [ 7¥o - 1Ty? 1]7 [ n¥y ] [’YTYO - 1'Tyol 1]
(Yo LY RY) " 1y,y)? (Y, (Y RY) y,17

and the (1-a)100% confidence ellipsoid for %Tyo is

T h Ex -1
~T T T T
(Y¥y - 7Yy '—'FE_'] (y¥y - 7Yy

oy | -1 -
S Y;(YTQX Y) Yo [ “%“_g:‘__g—lf Fq, n-p-qi‘l(&) ]
where Fqrn-p-qf@) is the wupper (100a)th percentile of the

F-distribution with ¢ and n-p-q degrees of freedon.

The (1-a)100% simultaneous confidence intervals for Yg7i are

|
T+ (n-p) £ R R P ndjj z
i+ [t anneen@] B a2 )

i=1,...,9. (3.7)
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3.2.2 THE CLASSICAL ESTIMATOR.

For the model and assumptions given by equation (3.1) we can
express the likelihood function in terms of the unknowns F and 2&. Let
%x: be the ith row of X and y; be the ith row of Y (i.e. x; is a 1Ixq

1

vector and y; is a 1xp vector). Then the likelihood function is

n ¢ ’ ~ 1 ¢ ’ T
LBz =TT en 8 |5 W P 1 XA (3.8)

i=1

Maximizing equation (3.8) (or its logarithm) produces the maximum

likelihood estimates :

B= &0 %"y (3.9)

and

=2

5, =1 (-3 (- %8 (3.10)
The m.l.e. for an X, vector is obtained as follows :

Suppose X, is an unknown (1xq) vector corresponding to a new (1xp)

vector ¥y, . Assuming for the time being that 2& and B are known then the

likelihood function of equation (3.8) can be written as a function of

Xo- Thus

-1 T
L(x,) = (2m % lzyl"lf e 1Yo =~ X 3y (Yo - %o (3.11)

Now equation (3.11) is a maximum when the exponent is a minimum.

. . -1 . . .
Minimization of (y, - xoﬁ)Ey (yy - xoﬂ)T is equivalent to a weighted
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least-squares regression for unknown X, . Consider the model
Yo = Bxg + ¢ (3.12)
in which B is assumed known. The least-squares estimate for x, is thus
x, = (88" By, (3.13)

-
Now there exists a non-singular matrix P such that PPT=2y .

Premultiplying both sides of equation (3.12) by P’ gives
PTy; =PTﬁTX; + PTK
or y: = ﬂ*x; + (* (3.14)
From equation (3.13) the least-squares solution is thus

x; = (87857 8y,

(ﬂPTﬂT)-lﬂPTy;

Thus ,

x; = B, B0 B, v, (3.15)

A
o
L]
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Also,
1

covixed = (B, 8B, B BE B (3.16)

where 2& = {aij} .

3.2.2.1 Confidence Intervals.

For khown B and Ey , the quadratic form in equation (3.11) has a x%

distribution. Thus a (1-a)100% confidence region for ﬁo is

(Yo - XOﬂ)E;l (Yo - xoﬁ)T g Xg,]-a (3.17)

For most practical purposes, the quantities B and 2& will not be
known and in which case we would use the corresponding estimates b and
f& obtained from the regression of Y on X.

Let the statistic W be formed by replacing B and 2& in equation

(3.17) by their sample estimates i.e.

W= (yy - xoﬁbf;‘(ye - xoﬁbT (3.18)
Now

Yo ~ Np(xo6. %))
and
Elvo] - ElxA)

%08 - x,8 since B is unbiassed.

El(y, - %,P]

0
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Also Covl(yg; - XoB;) (¥o; = %oB;)] = EL(¥y; - %oBy) (¥o; - %oB)) ]
= E[[(Y()i_xoﬂi) + (xoﬂi—xoﬁi)] “YOj'xoﬁj) + (xoﬂj-xo;&j)]T]
= E[[(m"‘oﬁﬂ + (xgB; - XB) LW ;-XeB5) " + (xoﬂj—xofsj)*l]
= E[(yoi - XoBi) (¥g; - xoﬁj)T] + E[(YN - %oB;) (%85 - xo;?j)T]
+ E[(XOﬂi-XOBi) (Yoj'x‘)ﬁj) T] + E[(xOﬁi'XOBi) (XOﬂj-xObj)]
= O'ij + XO COV[Blﬁ]] xg
= 0'1] + xO [013 (XTX)—I] x;
= alj + 01) 80 (XTX)-l x;
= 01] [1 + xO(xTX)-lx;]
Thus
Covliy, - xoﬁﬂ =3, [1+ xo(x’x)"x;] (3.19)

Furthermore, nﬁy is distributed independently with Wishart

L

n

o

distribution Wn-q(:|%y) where X% =

Thus
p, Ty =1 T

(Yo-mf’)
:) -——-——r——c_i ~ NP[O'BY ]
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-1
where c=[1+ xo(XTX) xS] .
Also,
-% T % - 2
[e *(yo- xom] [e *(yqy- xoﬂ)] ~ Tprn-q
2
3 -~ Tpin-g (3.20)
where
2 (n-q)p
Tp'n'q n-p-q+1 FP'“'P'Q*' .

A (1-a)100% confidence interval for io is given as all x, for which

2
W <c Tprn-q
T =1 1. (n—-q)p
# W _<_ [1 + xO(x X) XO] ﬁ"_"_‘l‘)':_"&:'_-i‘ Fp,n-p-q'}] (3021)
Additionally, an a-level test of :
Bo H xO =b
against H, : x, $#Db
rejects if
Nl P (n-q)p
(yo bﬂ) Ey (YO bﬂ) > A n—-__—I-,—_—(-I—_-'_T Fp,n-p-q+|(a) (3.22)

where A=[1+ b(XTx)-le] .

3.2.3 THE ORTHOGONAL ESTIMATOR.

In §2.3.1 the orthogonal estimator was developed for the simple

regression/calibration case. We now present a generalization for both
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the multiple linear regression and multivariate multiple regression
situations. Consider the case of a single dependent Y and multiple
independent X's as is the «case in multiple regression. The
three~-dimensional situation is depicted in figure 9. 1In this
representation, a; and a, are any two independent vectors in the plane
and hence the matrix A = [gl,gzl represents a basis for the plane. Now,
each vector in the column space of A is a linear combination of the
columns, with some coefficients a@,,...,0n which we may write as Aa .

For all choices of & these vectors in the plane must be perpendicular to

the error vector
AX - b (see figure 9). Thus
(Ae) (AX - b) = 0
3 @ [AAx-A'b] =0
therefore
AAX -Ab =0
3 x=an 2.
This last equation is the usual least-squares solution. Thus the point b
has projection p = AX = A(ATA)_IATb and hence the corresponding
projection matrix is ¢ = A(ATA)-IAT . The generalization to higher
dimensions is straightforward. First assume the data have been centered
thus eliminating a constant term in the model. Next consider
Y=XB+¢
where Yis (nx 1) , X is (n x p) and Bis (p x 1) i.e.
Yi = Bixpq * ByXgy + oo+ Bpxpi +
Now the columns of matrix A form a basis for the plane ( in this

case in (p+l) dimensional space). Any set of independent vectors will
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Figure 9. Orthogonal projection of arbitrary
point b onto plane A = [a,,a,].
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do, although we choose a convenient basis as :
A= IP
ﬂT
where
.
ﬂ = [ﬂllﬁ2l"’lﬁp]
and Ip is the (pxp) identity matrix.
Now A'A = [Ip + G0
T..~1 T, 1
and (A A) = [Ip + B8] (3.23)
The right-hand side of equation (3.23) can be written as
-1 -1
[Ip+ A8 =I,-Ba+ 8P 6
T -1 T
=I,-B1+8P B
T
=Ip - ﬁ%ﬁ (3.24)
1+8 B
Thus the projection matrix is
-1
#=ARA A"

SISl

r
Let 0 = Ip —£¥1- and therefore
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®= _ip._ Q [Ip l ﬁ]
| B
= |8 [Ip | ﬂ]
| B0
thus
(p"l)z(p"l) ) [ 2 ?6 ]
BQ | Bop
where Q is (p x p)
0@ is (p x 1)
and gofis (1 x 1)
The elements of Q are
[ 1+£Il)r§(l) -6,8, -'3!'33 .

1
1 +Sﬁ§
izl

where G(;) is f with fB; removed .

2% 148(2 82y ~Byby - -

. _:31 :Bp
. —ﬂgﬁp

~Bpb, ~BpB, BBy - - - 1BimBeo |

Thus, for the situation depicted in figure 9 we have

Y = Byxyi ¥ Bpxgi + &

PhD Dissertation

96

(3.25)

(3.27)
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for which
1 [ue A
—W['ﬁlﬂ2 1*ﬁf}
SN
16148 |,
and

T i 2 2
= e | )
BB Hp By + By

Therefore the corresponding projection matrix is

L [18, -8B, B
148282 | -8B, 148, B,
B B, BB,

3.2.3.1 Orthogonal Least-Squares estimation.

We now describe a procedure for estimating the coefficients of
such that the sum of the projected vector norms squared is minimized.

Let y? be the orthogonal projection of y,; and xTi be the corthogonal
projection of Xii where X3 is the ith value for the j b x-variable. It
can be shown (see Appendix F) that

p

(v} - vy =
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P
. - ) BiBxi
- v = k= x
(x5 - x53) >
2
1+ 2 By
k=1

Oour criterion is to select the §'s such that

P P
2
n 2 Bixii = ¥i - Y BiBixi;
l.___ =l + k=(
i=1 v 2 e 2
1+ z B 1+ z By
L k=1 k=1

is a minimum.
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(3.28)

The minimization of equation (3.28) requires differentiating Z with

respect to ﬂj , setting the result to zero and solving the resulting

equation for ﬁj . This process is tedious and will not be presented here

although the derivation is given in Appendix G. It turns out that the

equations that need to be solved for the ﬁj's have no closed form

solution and one is necessarily forced to use some iterative procedure.

An equivalent, although computationally simpler,

developed and is now described.

procedure has been

In the most general situation Y is (nxp) , Xis (nx q) , and B

is (q x p). The iterative procedure for the orthogonal least-squares
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estimation of B relies on the preceding results applied to a single
column of Y at a time to estimate at each stage a column of f.
Specifically, the steps involved are as follows :

Step 1 Obtain an initial estimate using OLS i.e.

~ -1
B, = X% X'y
0

Step 2 : For the jth column of E% :

Compute the projection matrix Pj . Where

B0 lﬁQB

and

Bj is the jth column of ﬁ .

th

Step 3 : Let 2 = [ X | Yj] vwhere Y is the j~ column of Y.

Thus Z is (g+l)x n . The matrix of projected values

is then 2* =z P; .

Step { : Extract the X and Y projections from Z* as :

-G
Gt Y e
I

= ZTq+1, [i.e the (q+1)th column of Z* ]

* * *
lz¥ ... 281
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Step § Compute the criterion Z as :
* T, K o * *
T
L= (v7 -0 - v+ ) &g - X (X - %)
k=t
= -0 -n st - 0T@ -0
Step 6 : Update ﬁ using Newton-Raphson iteration :
-1

B (i) - B (m) 2913, (m) A (m)

B, B, [V 2B, ™) ] V 213, ™1
Step 7 : Repeat steps 1 - 6 until convergence established.
Step 8 : Repeat steps 1 - 7 for j = 1,2,...,p components of B

and Y.

The complete iterative procedure has been programmed using the
matrix-based language GAUSS. A listing is given in Appendix H. We now

illustrate the use of all three procedures discussed so far with the use

of an illustrative example.
3.2.4 AN EXAMPLE.

The data in table 11 are reproduced from Brown (1982). There'are
four Y variables represgnting infrared measurements taken on twenty-one
sanples of hard wheat. The two X variables are laboratory determinations
of %water and %protein for each of the samples. Thus in this example
n=21, p=4, and g¢=2. Assuming no particular ordering existed in the

presentation of the data, we have treated the first 15 observations as
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Table 11. Twenty-one samples of hard wheat. Y-variables represent

infrared reflectance measurements , Xy is % water and X,

is % protein.
Observation Yy Yo Ys Y4 Xy X9

%water %protein
1 361 108 96 243 9.00 10.73
2 361 107 98 245 8.94 11.05
3 362 110 94 241 9.12 9.86
4 362 105 94 246 9.06 11.41
5 362 104 70 221 10.02 11.57
6 3671 113 75 221 10.06 9.42
i 366 108 82 233 9.52 10.93
8 360 104 86 236 9.32 11.61
9 362 113 85 229 9.56 8.82
10 360 103 90 242 9.10 11.81
11 351 97 88 238 9.14 12.33
12 353 95 13 221 9.70 12.93
13 352 97 71 228 9.60 12.69
14 355 96 52 206 10.62 13.13
15 357 106 69 216 10.04 10.41
16 351 93 69 222 10.00 13.57
117 363 113 88 231 9.46 9.26
18 363 110 101 248 8.86 9.82
19 366 96 85 235 9.34 12.85
20 350 96 85 235 9.34 12.85
21 355 97 63 216 10.12 12.81
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representing the calibration test data. The last six observations will

then be used for calibrating purposes and the methods compared in terms

of MSE.

The mean and standard deviation data are as follows :

n=15

Y,

359.40 104.40

2

4.82 5.89

Yg Y,

81.93 231.47

12.63 11.717

3.2.4.1 The Inverse estimate.

X X

1 2

9.520 11.247

0.493 1.267

For the inverse regression of X on Y the following matrix of

parameter estimates was obtained (N.B. data was centered prior to

analysis) :

0.0185
~ | -0.0052
T= | -0.0131
-0.0287

0.1928
-0.3945
0.1087
-0.0983

Calibration of observations 16-21 :

Observation # X,

16
17
18
19
20
21

10.00

9.46

8.86

9.78

9.34
10.12 1

Xl
9.8635
9.4765
8.8350
9.8451
9.2479
0.1673

MSE = 0.0234

3.2.4.2 The Classical estimate.

13.57
9.26
9.82
9.46

12.85

12.81

x2
13.6513
9.2542
10.1783
9.1484
12.7352
12.7825

The matrix of parameter estimates obtained for the regression of Y

‘on X is
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0.0057 -0.7869 -24.1135 -23.5830

-2.7611 -4.4276 -2.1461 -0.0471

Calibration of observations 16-21 :

~

Observation # X, X
16 10.00 9.8626
17 9.46 9.4784
18 8.86 8.8327
19 9.78 9.8490
20 9.34 9.2449
21 10.12 10.1689
MSE = 0.0250

3.2.4.3 The Orthogonal estimate.

Parameter

estimates obtained wusing

described in §3.2.3.1 are

Y

~

x2 x2
13.57 13.6822
9.26 9.2259
9.82 10.1703
9.46 9.1147
12.85 12.7595
12.81 12.7976

the iterative procedure

-0.4263 -1.2088 -24.3542 -24.1554

-5.0579 -4.7169 -2.1356 -0.0147

Calibration of observations 16-21 :

-~

Observation # X, X,
16 10.00 9.8531
17 9.46 9.4433
18 8.86 8.8272
19 9.78 9.8272
20 9.34 9.2482
21 10.12 10.1719

MSE = 0.0389

~

x2 x2
13.57 13.5453
9.26 8.9732
9.82 10.1473
9.46 8.9815
12.85 12.7452
12.81 12.7897
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The above results show little difference between the three methods
employed although no inferences should be drawn about the relative
merits of each from such a small example. To this end we next present
the results of a simulation study similar to that wused for the

univariate case in Chapter 2.

3.3 A COMPARATIVE STUDY OF POINT ESTIMATORS IN MULTIVARIATE CALIBRATION.

The procedure for producing a simulation to compare the inverse,
classical, and orthogonal estimators in terns of bias and MSE is
considerably more complex for the multivariate case than for the
univariate case. Experimentation with the simulation model has been
limited due to two factors : (i) there are many more parameters in the
multivariate case which can be varied giving rise to excessively long
runs if a full factorial design is implemented ; (ii) each simulation
run is very computationally intensive since the orthogonal estimate has
to be obtained by iterative methods. Nevertheless a small resolution
three fractional factorial experiment has been conducted to examine main
effects for a number of factors thought to influence the performance of
the various estimators.

The simulation process (for the muliivariale measuremeni-error
model ) is described by the following sequence of steps (NB. Y is a

4-component vector and X is 2-component) :

Step 1 : Data entry - user must specify B matrix

coefficients in addition to the following parameters
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Step 3

Step 4

Step §

Step 6

Step 7

3
.

2]

Statistical Calibration: Theory and Applications PhD Dissertation

105

means and variances for Xl and X2 ; measurement
. 2 2 .

error variances ahl and ahz : coefficient of

variation for Y,,Y,, Y3, and Y, ; correlation

coefficients for errors in X's , errors in Y's and

error in X with error in Y.

Construct covariance matrix 2% for the Xl and X2

data , where

a P. ag_ 0
%, = Xy X1Xg X| X2
2
g, 0 a
pX|X2 Xt X9 X9

Perform the spectral decomposition of 2& :

1
%, =PD,P’  and let A=PD}.
Generate (n+l) observations fro?lz2y N(O,I)
X

Form matrix of {rue (unobserved) x-values :

x =20 +[ Py, ' HFxy ] )

Compute the vector of expected Y's :

m= pB (B is fixed).

Assemble combined error covariance matrix :
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where Ee is the error covariance matrix for the ¢
terms in the multivariate model Y = X8 + £ , 2& is
the covariance matrix £for the measurement-error
terms (u), and ELU is the cross-covariance matrix
between the £ and u errors.

. ., th .
The {i,3j} element of Ee is peiej(ci yi)(cj,uyj)

]

the Y's , c¢; and c; are respectively the

where p_ is the correlation between the errors in
1

coefficients of variation of Y, and Yj . The

2 2
diagonal elements of Y are o and o . The
u Uy U2

off-diagonal elements are Paius%uy %y where Payuy is

the correlation between measurement errors for the

X, and X, variables. The {i,j}th element of Y is

! eu

p..0. 0 where p_  is the correlation between the
eue; u; eu
errors in Y and the measurement errors in X and the

error in Y.

Obtain the spectral decomposition of Y :

1
%= 00,0 and let B = QD! .

Generate (n+l) observations fro?lZ§T N(O,I) .
X
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Step 10 : Obtain matrix of errors : E = Z2BT

Step 11 : Extract £ (model error) and U (measurement error)
components from E.

Step 12 : Compute the matrix of observable x's :

Xi=xi+ui i'—'l,...,q.

Step 13 : Compute the matrix of obserwvable y's :

Y=x08+§&.

Step 14 : Using the first n observations on X and Y, compute
all three estimates : inverse ; classical ; and
orthogonal.

Step 15 : Using each of the estimated models from step 14
calibrate for X using observation Y and

(ntt) (ntl)
examine difference [X -X
(ntl) (nti)
Step 16 : Repeat steps 1-15 for length of simulation rum.

3.3.1 RESULTS.

As previously mentioned, comprehensive experimentation with the
simulation model is made difficult by virtue of the time and complexity

of the model. We present here the results of a small trial in which
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various combinations of six factors were investigated. Each of the six
factors (described below) assumed either a high or low value for a
particular simulation run. Thus a complete factorial experiment would
involve 64 treatment combinations. In view of the fact that one
treatment combination requires N simulations (where N 1is reasonably
large > 50 say ) and one simulation requires the generation of 6n (n is
typically 100 or more) random variates having a prescribed covariance
structure and that the orthogonal estimate requires iteration on each
column of & , the need for fractional replication becomes apparent. To
this end a one-eighth fractional factorial design has been employed.
Since this is a resolution three design only unbiased estimates of main
effects can be examined. It is well recognized that interaction effects
are likely to be significant determinants of the efficiency and bias of

the estimators considered. This is an aspect of the study that will

require future investigation.

Summary of simulation input data :

Fixed parameters :

8= 0.5 2.0 0.1 1.0
0.5 -1.0 0.9 -2.0
”Xl = ux2 = 10.0

3 By =yxﬁ= {10.0 10.0 10.0 10.0]
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Variable parameters (factors) :
Factor # Description High value Low value
1 Coefficient of 0.20 0.01
variation for Y data.
2 Measurement error 1.00 0.10
variances.
3 Variance of x 2.00 0.50
data.
4 Correlation between 0.90 0.20
measuremnent errors.
5 Correlation between 0.90 0.20
residual error terms.
6 Correlation between 0.50 -0.50
measurement error and
residual error.
Design matrix :
Factor - 1 2 3 4 5 6
Run
1 0 0 0 0 0 0
2 0 0 1 1 1 1
3 1 1 0 0 1 1
4 1 1 1 1 0 0
5 0 1 0 1 0 1
6 0 1 1 0 1 0
7 1 4] 0 1 1 0
8 1 0 1 0 0 1

Where a zero indicates corresponding factor is at low level and a

one indicates the high level.

For each of the eight runs fifty simulations were performed. For

each simulation 101 observations for the X and Y data were generated -

the first one-hundred being used for parameter estimation and the last
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observation used for calibration. A listing of the complete GAUSS

program may be found in Appendix I. Table 12 lists the bias and MSE data

that was obtained for this simulation experiment. With reference to

table 12 the following comments can be made :

(i)

(ii)

with respect to bias , the orthogonal estimator performed
best overall with the classical estimator having the
worst bias. It is readily apparent that the classical
estimator consistently underestimates by about 1.5% of
the true calibrated value. The inverse and orthogonal

estimators have biases of about 1/10th of this.

The inverse estimator is demonstrably better in terms of
MSE. BAgain the classical estimator fared worst of all.
Particularly high MSE's were observed for the classical
and (to a lesser extent) the orthogonal estimators for
the second treatment combination. Relatively high MSE's
were also observed for the last treatment combination.
Both of these treatment combinations are characterized by
small measurement error, highly correlated residual
errors, and-a high correlation between measurement error

and residual error.

Since the above experimental design leaves only one degree of

freedom (if the mean is included) for the error term, it would be
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Table 12. Comparison of the inverse, classical, and orthogonal
estimators in terms of bias and MSE for the discrete

calibration example.

Bias MSE
Inverse Classical Orthogonal Inverse Classical Orthogona

1 -0.0060 -0.0094 -0.0048 0.0250 0.0263 0.0246
2 -0.1079 -0.6832 0.1109 2.3233 68.0956 30.3368
3 0.0040 -0.0148 0.0003 0.0197 0.0914 0.0217
4 0.0089 -0.1491 -0.0385 0.5088 1.8884 1.2300
5 -0.0180 -0.0017 0.0005 0.0376 0.0423 0.0358
6 -0.0180 -0.0026 0.2497 0.4451 1.5781 7.4686
7 0.0027 0.0028 0.0029 0.0016 0.0015 0.0015
8 -0.2279 -0.3532 -0.2341 2.0321 2.7239 2.9503

Overall : Inverse Classical Orthogonal

mean bias -0.0175 -0.1514 0.0109

av. MSE 0.6742 9.3059 5.2587
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tenuous to try and draw any statistical inference from these results.
However the magnitude of estimated effects does provide some insight as
to possibly significant factors. It would appear that the inverse
estimator is the most stable and is probably affected mostly by
measurement-error variance ,residual error variance ,and the correlation
between the two. On the other hand there is evidence to suggest that the
classical and orthogonal estimators are affected by all six factors
considered in this experiment. Interactions are probably likely to play
a significant role, although such information on such effects is not

admissible from this design.
3.4 CONDITIONAL MULTIVARIATE CALIBRATION.

The idea now is that when calibrating for X, it may be that some of
the components of X, are fixed in advance and we thus wish to modify the
procedure so that not only will io have the required fixed or known
values, but also that the remaining (free) components of io be such that
io as a whole has the correct covariance structure. Development of this
aspect of statistical calibration was motivated by procedures developed
for conditional simulations by Professor L. Borgman at the University of
Wyoming [For example, see Borgman (1982).

Before addressing the conditional calibration problem we first

present some standard results for the conditional multivariate normal

distribution.
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3.4.1 THE CONDITIONAL NORMAL P.D.F.

Let X and Y be two random vectors such that [ § ] ~ N(p,€) where

Cit Ci2
x71_ [ _ X7 _
Y ] = [ Fy] and €= Cov[ Y ] = [ cly Coo ] .
Let ¥ be the random vector Y|X=x where x is a vector of deterministic

scalars.

It is shown in Appendix J that

EY] = szcT:(x - By ) top (3.29)
and

- {
covi¥] = Coo - C‘[T.QCl]C]Q (3.30)

We now utilize these results to calibrate conditionally in the case
where the data is multivariate normal.

Let XS be partitioned as :

~

.. S
i - [+

where S has v components and T has v, components and v tv,=q.

Cit Ci2

. 7 .
T T
Furthermore, let [F[X¢] = [ ] and Cov[Xgp] = [ Crz Cag ] and let T

S
Py

be the vector i|§=s.

Thus, using equations (3.29) and (3.30) we have that
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-1
E(F] = ClaClils - p) + p (3.31)
and
) -1
CoviT} = Cq9 - CI2C|1C12 (3.32)

We are now in a position to identify the steps involved in

calibrating conditionally.

3.4.2 THE CONDITIONAL CALIBRATION PROCEDURE.

Step 1I:
Conduct the uncondtiional calibration to obtain Xo using either

equation (3.5) or (3.15). For the MLE (classical) estimator we have

~

8- a5 7 5 .59

(where 2&, denotes the estimated residual error-covariance matrix

for the regression of Y on X).

A A s
Partition Xg as xé = [';‘] .
Step 2:
For given S=s compute :
~ -1 ~ -~
F=CloCiils -8) +T (3.34)

where § and f are obtained from the uncondiiional calibration.
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Observe that our ability to calibrate conditionally is dependent upon us
having knowledge of Cov[io] .In order that we may develop an expression
for Cov[X,] it will be necessary for us to digress momentarily to

consider the regression of X on Y.

3.4.2.1 The regression of X on Y.

As noted by Brown (1982) and others, when both X and Y are
multivariate normally distributed the use of classical and inverse
estimators are equally valid. Using the inverse estimator of equation
(3.5) we obtain the calibrated vector i: directly from the estimated
regression model. Furthermore, after suitably transforming both it and
io, the resulting quantities are in fact equivalent up to a constant of
proportionality and that the constants are the cannonical correlations
between X and Y. We now develop these ideas further.

In what follows we assume that X and Y have been centered.

Recall, the inverse regression model is :
X=Yy+(

where the dimensions of X,Y, and v are respectively (n x q), (n x p),

and (p x q). The estimator, % is obtained via OLS or GLS as in equation

(3.3).

Thus, given a new (1 x p) vector y,, we obtain x§ as :

- -1
X0 = XYYV v, (3.35)
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After some algebraic manipulation it can be shown that :
~KT T, -1 DAL BA SRES B RS S SRl

X =[(XX) +p 1 (BY, )Xo (3.36)

-

where B is obtained from the regression of Y on X using equation (3.9)

~

and 5, =YY- g'x"x8 (3.37)
1 A a_l

Next, let W= (XX)?J Ey'f

(x'x) (3.38)

3NN = (x’x)‘fﬁzyﬁ

Using the Binomial Inverse Theorem [Press (1972),p.23] it can also be

shown that
la -1 g S
(X0 TIRET = [z, + W17V (3.39)

-1
Let @) = [1, + W W]

:9[1q+wa] =1
and 0+ MW W) =TI
hence S W)™ + = WWHT 2 QLW +1I]= v~
s =W wwn e Iq]" (3.40)

However, since (W HT) and Iq are both symmetric the product in

equation (3.40) is commutative and hence we may write :

Q=1+ (¥ e (3.41)
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Now from equation (3.39) we have
—la _l =1la
x'x) %y = [, + ¥ W1 W W (X'X) X
-1, -1 -1 -da
= [T, + (¥ DN BT I RPN I AP 35 > ¥
-1 -1 g N
= [ + (W W) 71T (%) 7Kg (3.42)
- -1
Let U = (X'X)"2X'y(Y'y)
=1 .y
= 5%, %° (3.43)

Thus the positive eigenvalues of U are the cannonical correlations

between X and Y.

A

-1
Now, % =YY - Y'X(X'X) XY (3.44)
, T, ~42 T, =1
Letting V= (YY) EEy (YY) * we have
1
Vo= (xnty (Y'v)? (3.45)
Furthermore, it is relatively easy to show that
T
VvV=I-U0U (3.46)

-1
Next consider (I + W WT) W ¥ . In the most general case where X is
(n xq) and Y is (n x p), U will be a (q x p) matrix and V is a (p x p)

matrix.
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Now

-1 -1 P S |
I +WH) WW =(@+0v 0) w u

Using the Binomial Inverse theorem we have

-1 -1 -1 -1 -1 -1 =1 -1
(T+ov o) =[I-u (Vv +V OO ) Vv Ul

and hence

1 1

- -1 -1 -
[I-UV (V +V uuv
-1

-1 -1 -1
Yy v uev Ul
1

-1 S S |
(T+uv u) w v’
- -1 -1 -1 -t
svivowh vl T
-1 -1 -1 -1 -1 -1 -1 -1
oo v v uToV )T (Vv + v oY U
I

-1 -1
wv U - UV (V

-1 -1 -1 -1 -1 -1 -1
v (Vv +V oUW ) Ve U

- | -1 -1 -1 -1 -1 =1 -1 -1 -1
w o avioTov )T v o+ v eTey e - v Uy U]
1

- - - -1 -1 -1
oo s vivowh T
-1 =1 -1 =1_=1
WV aI+uww )] v o

-1 -1 ~1
W o(T+uuv ) U

-1
uiv+uu U

but by equation (3.46), V + U'U = I. Thus substituting into the last

expression we finally have that
T, -1 T -t T -t -1_7 -1 T T
(I+WW) WW =(I+0V U) UV U =0I U =1UU {(3.47)

-1
Thus the eigenvalues of (I + W HT) W W' are the same as those of
. However, as previously noted, the eigenvalues of U are the
cannonical correlations between X and Y and hence the eigenvalues of v’

are the corresponding correlations squared.
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From equation (3.39) we have :
—la B R ~la
(x'X) 72Xy = (1, + @)1 (X% 7Kg
-t -la ~la
2 [+ W ¥ 71T = (x7%) T IXg (3.48)

-1
Let [Iq + (WH) ] have the spectral decomposition QDQT where the
-1
columns of Q are the normalized eigenvectors of [Iq + (WW) ] and D =
diag(A;,Ag,...,Aq) be a diagonal matrix of eigenvectors. Thus equation

(3.48) can be written as :
g -la
opQ" (x"X) TIXG = (X'X) Xg
-la —d A
3 Do (X'X) Xy =0 (X'X) Xy (3.49)
If we let A = QT(XTX)_% we obtain :
pAXS =AZXp (3.50)
In otherwords, after applying the same transformation (namely 4) to
both iK and io, we find they only differ by constants (A;,Az,...,Aq)
which, as we have shown, are the squared cannonical correlations between

X and Y. We now utilize this fact to derive the covariance information

for io.
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3.4.2.2 The covariance of ig.

For a given y, vector we can use the previous results to obtain
io = [£1,£2,...§q]. Observe that ﬁo is a random vector having some mean
vector ”xo and covariance matrix 2%0. In general, it will not be
possible to estimate 2&0 using a sample covariance matrix since there
will only be one g-vector io. As an alternative, we use the relationship
between ﬁo and ﬁ: established in the previous section.

Returning to the regression of X on Y :

X=Yy+ (
thus

ig = Yo%
where

= @' Y%
and

~ -1
coviXel = yo (YY) ¥, 5 (3.51)
where X is the residual error-covariance matrix for the regression of
X on Y. Now from equation (3.50) we have :

pAXY = A X

where Q=AD A

4
pd
o>
1]
>
(-2 3
=

and thus :

~

;
Q Exo 0 (3.51)

COV[io] = iko
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Thus, by performing the regression of X on Y we can obtain an
estimate of Cov[io]. Knowledge of Cov[ﬁo] allows us to calibrate
conditionally using the procedure outlined in section 3.4.2.

It should be pointed out that we are not necessarily advocating the
use of the classical estimator over the seemingly more direct method of
regressing X on Y (which as we have seen, needs to be performed anyway
if estimates of Cov[io] are to be obtained). All we are attempting to do
is to provide a reasonable mechanism for calibrating conditionally given
that one wishes to use the maximum likelihood estimate given by equation
(3.15). We now illustrate the procedure using the previously considered

wheat data. A comparison of the methods will also be provided.

3.4.2.3 An_exanple.

The results of the previous sections are now applied to the wheat

data reported in table 11.
Note : (i) only the first 15 observations in table 11 will be
used for the purpose of model fitting. The remaining
data will be used for calibration.

(ii) all data is centered prior to analysis.

Preliminary data analysis

A cannonical correlation analysis of the data (n=15) gave the

following (standardized) cannonical variates :
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-+

0.5195Y9 + 0.0397Y3 + 0.8691Y4

Reflectivity : ¢, = -0.3541Y,

¢2 = -0.6524Y; + 1.7849Y, - 1.2006Y3 + 0.6315Y,
Composition : 7, = -0.9320%X, - 0.2513X,
Ty = 0.3914Xy - 0.9791X,

The cannonical correlations are : rl=0.998067 and r2=0.992321. The
correlations squared (also the eigenvalues of equation 3.15). are

A1=0.996138 and A3=0.984702.

For the regression of Y on X we obtain :

a'= (359.40, 104.40, 81.933, 231.467)

™
i}

0.0027 -0.3747 -11.4830 -11.2304
| -3.3795 -5.4193 -2.6268 -0.0576

- ﬁ54.323 68.159 30.857 71.739
68.159 34.082 16.089 28.259
30.857 16.089 19.606 19.853
| 71.739 28.259 19.853 45.024

&

W= 6.0425 -2.2184 -9.1563 -10.6294
T 1 2.77711 -8.5708 -1.4343 -0.8891

0 = -0.318778 0.947829
0.947829 0.318778
D = 0.9847 0.0000 A= -0.101054 0.252790
0.0000 0.9961 0.240629 0.064895
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Q= 1.005046 -0.004193
~0.002829 1.014407
Regression of X on Y
~ _ | 0.038935 0.157483
7= |-0.010858 -0.322290.
-0.027428 0.088771.
-0.060185 ~0.080345.
o _ | 0.068538 -0.030882
¥ = |-0.030882 0.203757
Calibration of observation #16.
For this observation we have :
Yo = [351, 93, 69, 222]
From the regression of X on Y we obtain :
Xy = [0.72123, 1.96381] (NB: these are centered values)

The calibration data yield : X; = 9.520 and X3 = 11.247. Adding

-~

these to the respective components of f: we obtain

X} = [10.241, 13.211].
Applying equation (3.50) gives io = [0.73991, 1.198538] from which

we obtain

io = [10.260, 13.232] (NB: these are the unconditional estimates).
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- _ [ 0.0308109 -0.0138828
NowW,  Byy™ [-0.0138828 0.0915934]

from which we compute :

- _ [ 0.0312553 -0.0138411
5%0 -0.0138411 0.0937138

Finally, given that % water for this observation is 10.00 we obtain
the conditionally calibrated value of % protein as 13.3498. This
represents a 40% reduction in error when compared with the actual value
of 13.57 and the value of 13.2105 obtained from the regression of X on
Y.

The procedure has been applied to all six observations nol used as
part of the model fitting exercise. These results are summarized in
table 13. Overall, the conditional calibration of %protein using the
procedure outlined in this paper has resulted in an approximate 30%

reduction of mean square error when compared with the unconditional

results.
3.5 CALIBRATION IN UNIVARIATE MULTIPLE REGRESSION MODELS

The problem of calibrating in a univariate nultiple regression
setting perhaps arises less frequently than the other cases considered
thus far, although is no less deserving of formal investigation. The
situation presently referred to is when there is a single Y vector and
two or more regressor or explanatory variables. This would appear to be
a special case of the multivariate methods already considered thus

requiring no further discussion.
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Table 13. Comparison of the various calibration methods for the

multivariate conditional calibration of % protein.

Calibration of %Protein | %water.

Observation. Unconditional | Conditional Unconditional| Actual
(inverse) (classical) {classical)
16 13.2320 13.3498 13.2105 13.57
17 9.6031 9.5842 9.6180 9.26
18 10.3569 9.9951 10.3730 9.82
19 9.5205 9.7108 9.5316 9.46
20 12.4693 12.2924 12.4620 12.85
21 12.5197 12.8733 12.5007 12.81
Sunmary
Average error mean square error
inverse -0.0114 0.1255
conditional 0.0059 0.0937
classical ~-0.0124 0.1358
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However, this case presents special problems of its own and as such is
given separate treatment in this section.

Consider the model :
Y, = 8%, i+ ByRg; + - - -+ Poxq; + & (3.53)

Without loss of generality, assume we wish to calibrate for Xgq, on
the basis of a future observed value of Y , y, . A number of

possibilities exist :

(i) perform the simple regression of Y on X4 and use the

classical estimator of equation (1.2).

(ii) perform the simple regression of Xq on Y and use the

inverse estimator of equation (1.3).

(iii) perform the muliiple regression of Y on X,,X,,...,Xq and
use the <c¢lassical estimator (i.e. algebraically
manipulate the estimated regression equation so as to

express Xq as a function of the other variables.

(iv) perform the muliiple inverse regression :

Xg = Ag + AX, + . . .+ Ag-1Xq-1 + error.

(v) use all the available information and the nultivariate

methods presented in this chapter.
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Each of the suggestions (i) - (v) has inherent difficulties. These
are now explored in turn. Suggestions (i) and (ii) use only one
regressor and ignore the information contained in the remaining
variables. Such approaches should only be entertained when no additional
information is gained by incorporating all q variables - in other words
when the covariance matrix of [Y | X,.X,,...,Xq-1] is a diagonal matrix.
This is wunlikely to arise in practice. Suggestion (iii), whilst
utilizing all the available information also poses problems. If the

classical estimator is to be used then the calibrated Xo, will be

obtained as

q-1
. Yo - ) Bixye

Xqq = j=1 (3.54)

~

Fa

If there is some degree of multicollinearity present among the
regressor variables then Eq may assume values very close to zero in
which case the above estimate (and its variance) are grossly inflated.
In any event, the estimator of equation (3.54) suffers from the same
problems of undefined expectation and infinite variance as for the
simple case discussed in Chapter I. As an alternative to the use of
equation (3.54) one may use the nultivatiate inverse estimator of
equation (3.2). However this also leads to inefficient calibration for
the following reason. In calibrating for Xq, we presumably have
observations on the remaining X's as well as y, . In using the inverse

estimator we effectively calibrate for the entire vector of X's and then
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discard all but iqo . It is intuitively obvious that the quality of
calibration could be improved by examining how well we have calibrated
for the X's not of interest and on the basis of this comparison
"readjust" the calibrated iqo . This procedure forms the basis of the
estimator proposed in the following section. The classical multivariate
estimator of equation (3.15) is not particularly useful in the present
context. In this case f is a (g x 1) vector and hence the inverse
(8 Eglﬁf)-l in equation (3.15) does not exist since the (q x q) matrix
inside the parentheses is rank one. A g-inverse could be used although
problems of uniqueness then arise. Suggestion (iv) is mentioned by
Madddula (1988) although Goldberger (1984) notes that all of the A's are
biased and recommends against the use of this approach.

We now examine a means of calibration for the present situation
which utilizes all of the available calibration data and avoids the

problems mentioned above.

3.5.1 THE CONDITIONAL INVERSE ESTIMATOR FOR MULTIPLE REGRESSION

AN A LA R A LB R L2 AR AP B e e e

We commence with the inverse regression of X on Y
X=Yy+ (
where the dimensions of X are (n x ¢ , Y is (n x 1) and 7y is (q x 1).

Furthermore, it will be assumed that the ( are distributed with zero

mean and covariance matrix %, . Now the OLS estimate of 7 is
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~ -1 . ~oA -1
v = (YY) Y'X  with Cov[yi,7j] = (ii (Y'Y)

(ij is the (i,3)*® element of %,

Novw,
CoviX;g,Xj0l = Cov[yy7;r¥o7;l
2o 21"
= ¥y [EYI ] C],]
1=1
Thus,
2
- Yo
Cov[X,] = )
n
2
RE
i=1
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n
2
= (ij [ z Y; ] where
=1

i

(3.55)

(3.56)

We next apply the reults presented in §3.4 for conditional

calibration. First partition X, as

T
., Xp(q)
Xy =|--3---

where ig(q) is a (q-1) x 1 vector obtained by deleting xoq .

Let Cov[i&] =(C= [ Ci' €12 ]
Ciz | Ca2
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where Cyy is the (gq-1) x (q-1) covariance matrix of [XOl,ﬁ02,...,§0q-,]
; Cig is the (g-1) x 1 covariance matrix of X,;, and X¢q ; and Cpy is
the (1 x 1) covariance matrix of xgoq i.e the variance of x¢q . Next, let

~ >T T T . . .
go be Xo0q|Xy(q) = Xg(q) Where X,(q) 1is a vector of deterministic

scalars. From the results of §3.4.1 we have

EI%,] = ClaCii (X5(q) - Xpeay) + ElXoq] (3.57)
and
Covi¥,] = Caz - C1aCi7 Cia = Var[%,] (3.58)
Thus the procedure uses equation (3.57) as follows :

(1) perform the regression of X on Y and estimate 7y

(ii) using the residuals from the fitted model, estimate }
and hence estimate Cov[iol using equation (3.56) with i&
replacing %, .

(iii) partition ¥, and identify Cyi, Cy2, and Cas.

(iv) given new post-calibration observations on
YgrXgy+Xgqre-+rXgq-1 ,Obtain the uncondiiional calibrated

vector X, .

{v) partition X, as indicated earlier.
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(vi) the conditionslly calibrated X, is obtained using
equation (3.57) with ﬁg(q, replaced by the actual
post-calibration  data, i;(q, replaced by the
uncondstional estimate obtained from step (iv), and

E[ioq] replaced by the uncondiisonal estimate.

Observe that the variance of the conditionally calibrated value is
equal to Cq9q9 - CI2C1;|C12 . The quantity Cg9 is in fact the variance
that would result if one performed the simple inverse regression of X4
on Y. The present method utilizes all the available information and
"adjusts" the calibrated x,q on the basis of a comparison of the
calibrated XOl,X02,...,X°q-1 with the actual post-calibration data. The
actual reduction in variance is thus equal to CfgC;T'Clg which is always
positive. At wors! the conditional method will yield an estimator whose
variance is no larger than that obtained by performing the simple
inverse regression of X4 on Y. This situation would arise when the X's
are mutually independent in which case Cyj3 = 0 and hence the reduction
in variance is zero. Thus, compared to simple inverse regression, the

conditional procedure has an efficiency of

claci3'c
efficiency = ~12-11 ~12 (3.59)

Ca2
[NB: Cgg9 is a scalar]

We now illustrate the preceding methods with the use of a small

example.
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3.5.1.2 An example : univariate multiple calibration

The data in table 14 are taken from Fuller (1987,p65) and report on
the hectares of corn for 37 area segments (approximately 250 hectares)
in north-central Iowa obtained using three different methods by the U.S.
Department of Agriculture. The three methods were digitized aerial
photography, satellite imagery, and personal interview with the farm
operator. Observations 1 to 27 will be used for model estimation while
the remaining 10 observations will be used for calibration purposes.

For observations 1 to 27 in table 14 we compute the means and

standard deviations :

Xy Xy Y
mean 122.96 133.68 119.79
Std.Dev. 34.56 32.14 31.36

Each of these means was subtracted from the respective X and Y data (for
both the calibration and post-calibration data) prior to analysis.

For the inverse regression of X on Y we obtain :

7= [1.0867 0.8199]

and
31.7349 6.7937

~

zx=
6.7937 358.0830
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Table 14. Hectares of corn determined by three methods.

Photograph Satellite Interview
(X¢) (X9) (Y)
Segment
1 167.14 168.30 165.76
2 159.04 162.45 162.08
3 161.06 129.60 152.04
4 163.49 166.05 161.75
5 97.12 94.05 96.32
6 123.02 140.85 114.12
7 111.29 110.70 100.60
8 132.33 158.85 127.88
9 116.95 121.95 116.90
10 89.84 106.65 87.41
11 84.17 99.00 88.59
12 88.22 153.00 88.59
13 161.87 159.75 165.35
14 106.03 117.45 104.00
15 87.01 84.15 88.63
16 159.85 157.50 153.70
17 209.63 194.40 185.35
18 122.62 165.15 116.43
19 93.08 99.45 93.48
20 120.19 166.05 121.00
21 115.74 154.35 109.91
22 125.45 153.90 122.66
23 99.96 132.30 104.21
24 99.55 92.70 92.88
25 163.09 142.20 149.94
26 60.30 65.25 64.75
27 101.98 113.40 99.96
28 138.40 131.85 140.43
29 94.70 92.70 98.95
30 129.50 135.90 131.04
31 132.74 159.75 127.07
32 133.55 132.75 133.55
33 83.37 100.35 77.70
34 78.51 113.85 76.08
35 205.98 206.55 206.39
36 110.07 130.50 108.33

37 134.36 138.15 118.17
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Using the above results we can calibrate for the unused portion of
the data. For comparative purposes both the simple inverse estimate and
the conditional inverse estimate will be computed. These results are

summarized below .

Calibration of X, (satellite data) :

Segment actual simple inverse conditional
28 131.85 150.6034 149.1069
29 92.70 116.5926 115.3911
30 135.90 142.9042 141.6870
31 159.75 139.6491 140.0491
32 132.75 144.9623 144.0281
33 100.35 99.1690 100.4858
34 113.85 97.8407 98.4940
35 206.55 204.6862 202.3116
36 130.50 124.2836 124.1903
37 138.15 132.3517 135.1691

MSE = 185.8221 MSE = 166.3987

In this case the mean squared error in calibrating X, has been
reduced by approximately 10%. Whilst not spectacular, it nevertheless
highlights the fact that the proposed method is better than the use of
the simple inverse estimator. As already pointed out the efficiency of
the conditional estimator is very much dependent on the nature of the
covariance matrix Y, . To indicate the improvements that are possible a
synthetic data set, similar to that of table 14 but with a different
covariance structure, has been generated. These data are presented in

table 15.
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Table 15. Synthetic data for hectares of corn determined
by three methods.

Photograph Satellite Interview
(Xy1) (X9) (Y)
Segment
1 129.64 158.12 165.7¢6
2 122.89 124.12 162.08
3 126.86 153.96 152.04
4 134.18 165.09 161.75
5 124.24 126.12 96.32
6 119.39 129.24 114.12
7 123.92 137.16 100.60
8 126.26 142.46 127.88
9 119.07 135.45 116.90
10 123.53 135.93 87.41
11 124.16 134.64 88.59
12 123.52 143.92 88.59
13 115.81 111.25 165.35
14 115.37 102.17 104.00
15 119.58 120.75 88.63
16 118.15 125,33 153.70
17 131.71 167.37 185.35
18 123.61 142.25 116.43
19 121.85 119.57 93.48
20 129.68 159.37 121.00
21 133.98 164.40 109.91
22 126.90 151.75 122.66
23 122.88 143.59 104.21
24 122.00 133.37 92.88
25 121.75 122.02 149.94
26 124.12 147.90 64.75
27 114.25 106.86 99.96
28 123.02 130.62 140.43
29 114.37 104.71 98.95
30 130.45 160.57 131.04
31 122.84 129.95 127.07
32 122.14 126.13 133.55
33 122.00 131.81 77.70
34 118.69 123.99 76.08
35 122.18 136.19 206.39
36 122.88 149.42 108.33

317 122.94 135.40 118.17
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After performing the inverse regression the estimated covariance

matrix is

950.0649 1016.8997

~

1016.8997 1231.8416

A simple calculation indicates that for this structure the variance
of the simple inverse estimator can be reduced by 88% through the use of

the conditional procedure.

This reduction is evident when a comparison of the two estimates is

made.

Calibration of X, (synthetic satellite data) :

Segment actual simple inverse conditional
28 130.62 149.3985 136.9042
29 104.71 105.2694 126.0930
30 160.57 139.4088 144.5024
31 129.95 135.1853 136.2147
32 126.13 142.0791 135.7060
33 131.81 82.6623 133.4740
34 123.99 80.9388 129.8706
35 136.19 219.5710 138.4536
36 149.42 115.2484 135.5579
37 135.40 125.7169 135.9909

MSE = 1356.6344 MSE = 112.0507

In this case the reduction in MSE has been dramatic. Using equation 1
(3.59) it was computed that an 88% reduction was possible, the actual

figure is 92% .
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3.6 DIAGNOSTIC QUANTITIES

We now examine various diagnostic quantities similar in spirit to
those used in ordinary regression although now couched in the framework
of (multivariate) calibration.

Considerable attention has been given in recent years to the
examination of the adequacy of the fitted regression model and in
particular the identification of "influential" observations [for
example, see Andrews and Pregibon (1978) ; Belsley, Kuh, and Welsch
(1980); Cook (1977) and Atkinson (1985)].

Since calibration is a variant of multiple (multivariate)
regression we should similarly concern ourselves with the detection of
single observations or groups of observations which appear to be
abnormal in some respect. These atypical observations can arise in
several ways, for example gross errors in either the response or
explanatory variables or the use of an improper scale etc. The potential
difficulty in using these data for modeling is that the fitted model may
try to accommodate points which are in some way "strange” , leading to
residual differences between the data and the fitted model which are not
sufficiently large as to be noteworthy. This section is concerned with
the derivation of diagnostic quantities useful in detecting abnormal

observations in a multivariate calibration setting.
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3.6.1 PRELIMINARIES : OLS AND THE HAT MATRIX
Consider the multivariate regression model
Y=X8+¢
for which the least-squares estimate of B is
B= "%y

. -1
Now the matrix of predicted Y's is thus X8 = X(X'x)" x'Y = HY . The

matrix B is referred to as the "hat" matrix (presumably because it puts

“the hats on the Y's). Geometrically, H projects Y onto the column space

of X . Furthermore, the error matrix Y - Y=Y-HY = Y(I - H) is the

conponent of Y in the left-null space of X (the orthogonal compliment of

the column space of X) and thus I - H is similarly a projection matrix.
The hat matrix appears often in the derivation of regression

diagnostics. Of particular interest are the diagonal elements of H . The

th

i~ diagonal of H is

T, =1

= X (X'X) X!

i £i 24

h

h row of X . h; is referred to as the leverage

th

vhere X. (1 x q) is the it

and is a measure of the remoteness of the i observation from the
remaining (n-1) in the X-space. We now examine the effect on parameter

estimates, residual sum of squares and predicted (calibrated) values
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arising from the deletion of one or more observations. Before doing so,

the introduction of some extra notation is necessary.

Definitions and notation :

The effect of deleting the ith observation on the estimate ﬁ is to
yield an estimate ﬁhi, . If the number of observations deleted is

m > 1 , belonging to the set {I}, the rows of X corresponding to
the deleted observations form an m x p matrix denoted by X, . The
resulting X matrix (after deletion) is denoted by X(:). Y(:) and Y;

are similarly defined.
3.6.2 REVISED PARAMETER ESTIMATES
We first define the hat matrix for X; as
H = X (X0 'X, .
The matrix of revised parameter estimates is
Bisy = KinX(] XinY¥er - (3.60)

Recalculation of the revised parameter estimates using equation (3.60)

is not necessary as it can be shown (see Appendix K) that

By - B= @07 'xl(1 - 107 'R, (3.61)
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where
R: = ix - Y: .
3.6.3 REVISED RESIDUAL SUM OF SQUARES
For the multivariate regression model we assunme
E[&l =0 and Coviél = % .
Prior to deletion, our estimate of Y is
(n-)% = Y'Y - A'X'Y (3.62)
After deletion this becomes
(n-m-q) By = Y'Y - Y.V, - B(:), (XY - ;Y1) (3.63)
It is shown in Appendix K that equation (3.63) can be written as
~ - -1
(n-n-@) B(r) = (0-Q)% - R3(I - H) R, (3.64)

We now have the necessary results in order to investigate the
effect on calibrated values resulting from the deletion of one or more

observations.
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3.6.4 DELETION OF A SINGLE OBSERVATION

The effect of deleting the ith observation is now examined. We have
previously discussed a number of procedures for calibrating, namely the
classical estimator, the inverse estimator, and the orthogonal
estimator. Since the orthogonal estimates are obtained iteratively,
expressions for moments are not easily obtained and hence this form of
estimation will not be considered for the purposes of calibration
diagnostics. An expression for the variance of the classical estimator
was obtained in §3.4.2.2 . Since the derivation of this variance
necessitated the use of inverse regression it is suggested that for the
purposes of detecting influential observations the computationally
simpler and more direct method of inverse regression be employed. In
this case the preceding developments for deletion statistics still apply
- all that changes is the roles of X and Y are reversed.

Thus, for the inverse regression

-1
BH: = Y.(YY) Y.

-1
y; (YO y!
h.

1

and

T, ~1 T -1
(YY) y; (-h;) r;

Ty - 7

-1
(¥'Y) y;r;
(1'1'1 i)

and
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R
it

(n—p-l)ﬁ(i) = (n-p)ﬁ -
(1-h;)

1
. - T -1
Now X; - X(j) = X; - X%y ~ qu:o o B4y (Y)Y (5)) v;) .

-1
Let ¢c=1+ yi(YIi)Y(i)) yI (scalar) , then

T
~ 1 ~ -i ~ 2

—1; x; - 21)] —.EEH) [z; -x;n] ~ Tqin-p-1

C C

2 2 . )
where T is Hotelling's T distribution.

-1 . T ~1
Next consider ¢ =1 + yi(YIi)Y<i)) yI . The quantity (Y(;)¥(;))

can be written as

1 1

- - - -1 -
wiorGn =T e @i - B0 T e

thus
- 7

-1 -1 -1
v (Y 'yl 4y, (YD v (1-n) v (YD g

-1 T

;
Yi YY) ¥

-1 -1
.o, NN Yy, Ny

(1-h;)

hi _ _hj
(l‘hi) (1"111)

=hi+
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Therefore c =1+ N = 1
(1-h;) (1-h;)
Thus, an observation is deemed "influential" if :
A _l T
ry Y rj
P R e — (3.65)
(1-h;)

‘L 2
exceeds the critical value of Tg,p-p-1 at some chosen level of
significance. Alternatively, and equivalently, observation i is:

influential if

2i > -(—t-l_—p':l)—g' Fq,n-p-q, (9) (3.66)
(n-p-q)

3.6.5 A MEASURE OF INFLUENCE FOR THE UNIVARIATE MULTIPLE REGRESSION

MODEL

In §3.5.1 the conditional estimator for the univariate multiple
regression case was introduced. We now incorporate the present methods
of deletion statistics to assist in identifying influential observations
in such calibration problems.

In the following development we consider the effect of deleting a
single observation. An observation in the calibration data set will be
deemed to be influential if the difference between the calibrated values !
for X,; obtained when the i*® observation is included and when it is |

removed are "significantly"” different.
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As before, the vector of calibrated values io is partitioned as

In addition we need to distinguish calibrated values for which the ith

observation was deleted, we denote such a vector as

-, (ir¥g(q)
Xo(j) ===z~
(i)®0q

The notation is somewhat clumsy, although is necessary to fully indicate
the processes taking place. In the above representation, (i)iorq) is the
transpose of the vector of calibrated values obtained from a model which
was estimated using all but the ith observations. The parenthesized q is
used to denote the partitioning of the vector and represents the (q-1)
vector resulting from the deletion of variable éoq . Using equations
(3.61) and (3.63) we can obtain expressions for the revised vector of

parameter estimates and the revised error-covariance matrix. These are
N A Yi
Yip =T F — R, (3.67)
2
(1_hi)E Y;
i=1
and

. IR T
By =py- Rl (3.68)
(n-2) (1‘h1)
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Also,
Xoci) = Yo Yiid (3.69)
and
* - 2 ~le
C = COV[xo(i)] = Yo(Y.(rI)Y(I)) E(i) (3.70)

Furthermore, (" is partitioned as

* *
¢ = [C—;j;-l-g;—z—] (3.71)
Ciz2 | C22

By analogy with the definition of ¥ in §3.4.1, we let ¥,(;, be the

conditional warsadle :
~ ~T - T
(i)X0q () ¥gcq) = Xg(q)

T \ . .
where X;(q) is a vector of given values for the variables X,,...,Xq-1-

Thus
o KT k=1 T ny -
Xoi) = €12 Cit [Xy(q) = (X0l * (i)Xoq (3.72)

The discrepancy between the aeciual [, and ¥ (;, is a measure of the

th

influence of the 1i observation . A formal test can be constructed

around the quantity
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Io - go(i)
t 2 —————— (3.73)
SE[X, ;)]
where
o * *T %=1 %
Var[X,y(;)] = C22 - Cl;cll Ciz
Therefore, an observation is influential if
| %o - Zocir |
t = { (3-74)

* *T %=1 _x ]2
[ Coa = C12Cy1 Cy2 ]

exceeds Tn-q-2:(®) where T has the Student’'s t-distribution.
2

The advantage of equation (3.74) is that in deciding if an
observation is influential or not, all of the available information on
both the X's and Y is utilized. When performing the simple inverse
regression of X4 on Y it is possible that an influential observation
will not be detected by the wusual diagnostic quantities. Such a

situation is now presented by the following example.

3.6.5.1 An _example

The data in table 16 are from Atkinson (1985,p53) and were
originally given by Prater and later used by Hader and Grandage (1958)
to illustrate multiple regression calculations. The dependent variable

(Y) is the percentage of crude oil which, after distillation and
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Table 16. Prater's gasoline data.

Obsn. Crude oil <Crude o0il Crude oil Gasoline Gasoline
gravity vapour ASTM 10% end point yield
pressure point

X, X, X3 X, Yy

1 38.4 6.1 220 235 6.9
2 40.3 4.8 231 307 14.4
3 40.0 6.1 217 212 7.4
4 31.8 0.2 316 365 8.5
5 40.8 3.5 210 218 8.0
6 41.3 1.8 267 235 2.8
7 38.1 1.2 274 285 5.0
8 50.8 8.6 190 205 12.2
9 32.2 5.2 236 267 10.0
10 38.4 6.1 220 300 15.2
11 40.3 4.8 231 267> 26.8
12 32.2 2.4 284 351 14.0
13 31.8 0.2 316 379 14.7
14 41.3 1.8 267 275 6.4
15 38.1 1.2 274 365 17.6
16 50.8 8.6 190 275 22.3
17 32.2 5.2 236 360 24.8
18 38.4 6.1 220 365 26.0
19 40.3 4.8 231 395 34.9
20 40.0 6.1 217 272 18.2
21 32.2 2.4 284 424 23.2
22 31.8 0.2 316 428 18.0
23 40.8 3.5 210 273 13.1
24 41.3 1.8 267 358 16.1
25 38.1 1.2 274 444 32.1
26 50.8 8.6 190 345 34.7
27 32.2 5.2 236 402 31.7
28 38.4 6.1 220 410 33.6
29 40.0 6.1 217 340 30.4
30 40.8 3.5 210 347 26.6
31 41.3 1.8 267 416 27.8
32 50.8 8.6 190 407 45.7
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fractionation, ends up as gasoline. The four explanatory variables are :

X crude oil gravity, °API

2
crude oil vapour pressure, lbf/in
xg crude oil ASTM 10 percent, °F

X, gasoline end point, F .

For observation #11, X, was erroneously recorded by Prater as 267 -
it should have been 367. Such recording errors are not easily detected
and in this case cannot be identified by a plot of the x, values. More
importantly, it is possible that this error would go unnoticed in a
calibration of X, using a simple inverse regression of X, on Y as we

will now demonstrate.

The data is first centered prior to analysis by subtracting from

each observation the sample mean of the respective variable.

For the regression of X on Y we obtain

& = [0.1295 0.0938 -1.1030 4.4286] |using all observations.

and

%(;) = [0.1292 0.0939 -1.0975 4.6250] with observation #11 removed.

Calibration of observation #11.

The actual (centered) values for observation #11 are :

x, = 1.0500 ; x, = 0.6188 ; x5 = -10.500 ; x, = -61.9688 ; y = 7.1406

i
i
i
i
i
I
!
|
i
i
i
i
]
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Using the conditional calibration procedure of §3.5.1 we obtain
0.4332 0.1128 -1.9123 -2.8368
CT; =| 0.1128 0.0850 -1.1215 Cfg = | -1.5159
-1.9123 -1.1215 18.4305 24.2018

3
Cag = 34.8834
with

Xo(yy) = 30.3607 and var[%y(,,)] = 2.5120 .

Using the test for influence [equation (3.74)] we have

. 30.3607 - (-61.9688)

= 59,9357
[2.5120]

t

This result is highly significant and we therefore conclude that
observation #11 is indeed influential or suspect. For comparison the
statistic given by equation (3.65) is computed to be Z = 48.5735.

The a = 0.05 critical value for the test given by equation (3.66) is
12.2362 and thus the computed result is clearly significant. 1In
comparison, an examination of the regression diagnostics obtained from a
simple regression of X, on Y does not reveal the extent of observation
#11's abnormality. The studentized residual for observation #11 is
reported by MINITAB's regression program to be -1.89 (called a TRESID in
MINITAB). This is nol significent at the 5% level (terit = *2.045). The

utility of the proposed approach is apparent.

S
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3.7 DISCRETE MULTIVARIATE CALIBRATION

We now consider briefly the problem of discrete calibration i.e.
where one or more of the X-variables is discrete. This situation is most
likely to arise in experimental design problems where one is interested
in identifying the treatment combination that gave rise to an observed
response Y, . This type of calibration is similar to discriminant
analysis although the main difference being in the calibration context
we first estimate the response generating model. The multivariate
procedures already discussed in this chapter are not appropriate as it
is tacitly assumed that the X-variables are measured on an interval or
ratio scale. Rounding the calibrated values to the nearest integer
offers no solution to the discrete calibration, what is required is a
modified approach. A variant of the classical calibration estimator

applicable for discrete calibration problems is now proposed and the

‘method illustrated with the use of an example.

3.7.1 A_MODIFIED CLASSICAL ESTIMATOR

We assume the response-generating model is of the usual form

Y=X8+ ¢

In the present context, X is a design matrix . The matrix of parameter

estimates (or 'effects') is obtained in the usual manner as
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B=xn 'y .
and 3= -0 (r-1).

The proposed criterion for calibration of X is based on a minimum
distance concept (in this case we use the regular Euclidian distance).
Specifically, given a new value of the response Y, , the calibrated io

is that treatment combination for which
~ A_l Y
(Yo - YO)S (Yo - Yo)T (3.75)

is a minimum, where Qo = X8 .
The concept is quite simple and has intuitive appeal. We now apply

this technique to previously published data.
3.7.2 AN _EXAMPLE

The data presented in table 17 are taken from Brown (1982,p302) and
were obtained from an experiment in which information was sought on the
effect of two factors on the reflectivity of paint used for road
marking. A single patch of paint was tinted with pigment at three levels
(0% , 0.15% , 0.30%), and the viscosity of the sample was adjusted
before spraying to one of three levels (30,33,36 seconds in an efflux
cup); each of the resulting paints was replicated four times, giving a
total of 36 panels. The optical properties of each panel was measure in

three ways :
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2 . ,
Table 17. 3 factorial experiment with four replicates and

six response variables for Brown's paint data.
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(1) spectrometer measurements of incident light. Measurements
at two different inclinations were used to create three

responses ,Y,,Y,,Yg of table 16.

{(ii) integrated reflectance with normal incident light, Y, of
table 17.
(iid) peak-height and band-width on a recording

goniophotometer, Y;, Y, of table 16.

It is pointed out that Brown's analysis of this data was different
to the one presently being considered. Rather than attempting to
identify the levels of pigmentation and viscosity from post-calibration
Y data, Brown's objective was to determine an optimal subset of the Y's
that best modeled the data.

The observations in table 17 preceded by an asterisk have been used
for model estimation (these were randomly selected). The remaining
observations will be used for calibration purposes. A preliminary
inspection of the data is provided by figure 10 in which each of the
response variables has been plotted against the levels of each treatment
factor. A reasonable degree of curvature is indicated by these plots and

we therefore elect to use an orthogonal polynomial coding for the design

matrix X.
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Figure 10. Profile plets for each of the response
variables used in the wheat analysis data.
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The matrix of estimated parameters is :

1-743 29-450 69-333 37-870 94-167 20+417

-0-047 -0-483 1-225 1247 3-208 -0-275
0+040 1-033 0-275 0-015 -0-875 -0-175
- 0-129 4-892 4-550 1804 8-083 -0-81i7

B=1] -0.009 -0-825 -0-738 -0-304 ~-1.083 0-167
0-003 0387 0-562 -0-076 2-000 -0-613
0017 0-296 -0-212 0-192 2.542 -0-062

—0.004 -0-079 0+188 0032 -0-708 =-0-021
0-003 0+179 0-212 0-080 0-167 0-129 |

Using the above parameter estimates we can calibrate for the
observations which were not previously used. For each Y-vector, a row
vector § is computed using a particular treatment combination (i.e a
particular row of the design matrix). The quantity (Y - i)if‘ (Y - Q)T
is then computed and the procedure repeated for all treatment
combinations (rows of X). The treatment combination yielding the
smallest value of (Y - f)irl (Y - Q)T becomes the calibrated value for
X. This has been carried out for all 18 observations and the results
displayed in table 18.

It can been seen from table 18 that the procedure resulted in 10
out of the 18 observations being correctly classified. Such a result has

an infinitesimally small probability of occurring due to chance alone.

3.8 SEEMINGLY UNRELATED CALIBRATION

We conclude this discussion on multivariate calibration techniques
with a brief look at the seemingly unrelated calibration model (this

terminology has been coined by the present author).
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Table 18. Values of calibration criterion for 18 observations
of table 17 not used for model fitting. Underlined
entries correspond to minimum value of the criterion.
Entries enclosed with ¢ > indicate misclassified
observation.

Treatment combination

00 01 02 10 11 12 20 21 22

8 26.61 70.67 13.36 33.55 247.92 124.07 117.24 466.15
34.18 80.68 137.32 64.59 93.26 361.01 224.33 214.27 603.68
11.85 12.01 43.43 <5.10> 16.50 195.58 92.85 86.11 395.58

9.40 13.06 44.41 <2.19> 15.48 192.79 88.01 79.73 395.14
115.33  23.53 3.31 39.51 15.20 39.06 12.27 8.92 151.59
95.64 12.90 .54 30.96 11.08 54.96 18.59 15.84 178.48
41.98 2.82 14.73 6.43 <1.99> 16.98 43.30 40.19 277.89
40.74 3.06 12.44 4.24 <1.07> 114.19 40.14 35.14 273.96
13.32 10.02 37.39 <1.81> 12.00 181.04 84.05 75.69 378.20
18.00 7.93 30.57 <0.46> 8.26 163.37 71.26 63.01 353.13
278.21 111.32 53.22 150.08 96.43 0.25 34.45 35.63 45.26
222.66 77.78 29.29 109.91 64.77 5.31 24.99 23.34 71.17
103.97 25.26 10.80 35.12 17.62 55.38 4.57 <2.87> 164.97
165.47 51.77 22.17 74.44 43.55 28.66 1.42 3.84 104.37
183.18 62.82 26.42 84.66 50.78 22.27 «<3.14> 4.43 90.50
150.54 46.88 16.71 62.79 35.30 33.02 2.65 1.83 116.73
900.36 569.71 434.58 659.41 543.19 182.94 329.69 347.56 65.92
396.76 194.21 110.53 239.85 173.62 16.79 74.30 75.55 11.81
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The use of seemingly unrelated regression models is widespread in
econometrics and was first suggested by Zellner in 1962. This section,
whilst not presenting any new contribution to the body of literature on
SUR models, does however indicate their potential application in the
calibration context. We now give a brief overview of the SUR model and

associated estimation procedures.

3.8.1 SUR MODELS AND GLS ESTIMATION

The type of situation to which SUR models apply is probably best
illustrated by way of example. Consider the wheat data of table 11 and
the associated analysis of §3.2.4. For this case there was one
wmultivariate model describing the relationship between the laboratory
wmeasurements Y and the physical properties of the wheat X. Suppose now
that the same analyses had been conducted at m different laboraties, in
which case we end up with m multivariate models. If one assumes
independence between all observetions then we could utilize standard
MANOVA or MANCOVA techniques and which are offered as options in many
statistical packages (e.g. SPSS-X and SAS). However in many cases in
econometrics the assumption of independence is not tenable and thus the
standard procedures need to be modified. In the present example such
lack of independence may result from sending portions of the seme sample

to each laboratory for analysis. Formally, the m models may be written

as follows :
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v ™ b AR
Yy = X . __’?3_ + _fg_ (3.76)
-Ym J L Xm J _ﬁm J _fm |
where
Y; is (n x p) ; B; is (q; x p)
X; is (n x q;) ; § is (n x p) .
Equation (3.76) can be written more conveniently as
Y=Z9+¢ (3.77)

‘Where
Y is (mn x p) 7is (k x p) :

Z is (mn x k) ; ¢ is (mn x p)

m
where k = 2 q; -
i=1

Furthermore, assume [[§;] =0 , E[fzfj] = 3ij and that

(pxp)
E11 E12-' : Exm
Covlypl = 2@1 2g2 T Egm @ 1, = T
_Eml m2 ) .Emm_
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The BAN estimator of < is the GLS estimator :
- Tl =1 Tl
y=(2T z) zT v (3.78)

When OLS conditions are met equation (3.78) 1is equivalent to
perforning each of the m regressions separately to obtain
ﬁi = (xIxi)“'xIYi . However, when OLS conditions are not satisfied, the
GLS estimator of equation (3.78) is superior since it takes cognizance
of the covariance structure between the §; and because it uses
information on explanatory variables that are included in the systenm,

th equation. The potential gain in

but which do not appear in the i
efficiency through the use of the GLS estimator prompted Zellner (1962)
to use the term "seemingly unrelated regression equations". In the
present context we apply the term seemingly unrelated calibration to
emphasize that the primary goal is that of calibration and not simply
regression.

From a practical viewpoint, equation (3.78) cannot be implemented
without knowledge of I' , and this will rarely be the case. In such
situations Zellner suggests that I' be replaced with its sample estimate

f, where I' is computed from OLS residuals. Thus, the modified GLS

estimator becomes

~ sl =1 _Ta-l
5= @'z "2y (3.79)
where

I'= Cov[é]
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and the components of & are obtained as &i =Y; - xiﬁi .

Equation (3.79) may be applied repeatedly with & successively
updated from the previous fit. This iterative process is continued until
3 converges. For normally distributed £ , the resulting ; is in fact the
m.l.e. [Dhrymes (1971), Oberhofer and Kmenta (1974), Magnus (1978)]. We

now illustrate the procedure by applying it to an artificial data set.

3.8.2 AN EXAMPLE

The data appearing in tables 19 to 22 were computer-generated and
are intended to reproduce the kind of responses that might be obtained
for the wheat data of table 11 when a number of different laboratories
each perform the same analyses.

The OLS parameter estimates are

[ .0-351 1-998 3-192  5.692 |l __ F:
0-047 -1-474 -3-145  5.464 1

5386 13-737 4.977 6-437 |l __ b
B = | -0-556 -4-212 -1-463 2-079 ,2
-1.088 0-433 -0-901 0350 || __ By

0.-485 0-351 1-668 -15-968

1993 0-937 16-073 12-859 || __ b

| -0-336 -1-087 -5+687 -9-810 | 4

The estimates obtained by the iterative GLS procedure are

-0-554 2.336 3.670  5.449 (|

0-187 -1-721 -3-532 -5-365 1

7.235 12-347 0.381  9-629 || %

Y= | -1-026 -3-735 0.267 -4-837 2
-1+525 0-914 -0-550 =-0.785 5

14822 -0-841 -0+994 -19-805 3

-0-293 5-502 11-740 -3-829 |l &

| 1-062 -1-895 -3-538 -4-200 4
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Table 19. Laboratory #1 data.

%water %protein Y, Y, Y, Y,
9.093 9.447 360.498 106.711 86.604 250.18
8.857 10.241 368.325 103.684 102.201 234.32
9.837 13.021 361.880 102.193 105.941 256.31
9.340 10.264 357.174 104.316 89.506 219.23
9.146 9.865 357.027 102.885 97.458 248.62

10.537 13.113 359.418 104.757 79.353 217.98
9.407 12.669 362.326 103.359 66.340 210.98
8.977 10.621 368.908 101.260 90.997 222.54
9.364 11.891 363.424 96.745 77.027 228.28

10.127 12.468 363.922 111.402 95.952 243.59

10.781 14.280 352.792 112.377 95,281 223.49
9.130 9.780 361.478 118.354 103.656 252.03
9.708 11.747 359.335 103.329 89.487 232.59
9.446 11.605 358.200 102.511 104.697 241.70
9.077 11.146 363.462 102.053 74.662 225.39
8.886 10.226 369.316 108.990 85.704 231.68
8.574 8.749 359.900 101.332 108.902 259.45
8.958 7.642 352.073 97.396 87.345 234.25
8.766 9.241 363.902 108.824 102.591 243.67
9.752 11.743 367.445 117.185 79.150 215.68
8.958 9.182 357.931 96.729 93.240 231.15
8.798 8.159 361.994 113.864 98.754 255.26
9.858 12.465 349.763 87.807 55.225 204.10

10.022 13.489 360.875 98.025 64.118 217.88
9.013 9.017 359.562 106.343 87.996 220.59
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Table 20. Laboratory #2.

$water %protein Y, Y, Y, Y,
9.111 10.226 354.784 113.612 92.318 254.46
9.175 9.182 353.878 106.525 87.195 225.05
9.839 11.982 354.607 111.402 96.7717 218.95
9.925 12.510 358.804 113.590 107.042 232.26
9.521 10.925 359.330 104.677 89.734 257.27
9.144 11.104 350.377 102.336 68.028 209.317
9.611 11.112 368.370 98.982 63.216 197.01
10.092 12.225 368.283 115.560 102.269 251.54
10.041 12.422 364.874 99.645 65.508 231.30
8.132 6.327 353.619 107.871 89.427 231.56
9.150 11.043 361.946 96.225 83.340 233.26
10.419 13.578 354.451 106.423 76.785 226.84
9.105 10.533 351.274 104.595 91.158 221.95
8.547 9.599 361.526 94.048 94.846 238.59
8.702 9.134 349.917 108.185 61.324 217.19
9.040 10.390 369.271 99.723 72.684 240.20
8.879 8.535 352.309 98.522 92.071 242.52
8.833 9.486 356.968 98.465 95.043 236.36
10.072 13.468 363.255 103.181 94.416 233.35
9.697 11.463 361.953 114.253 73.783 210.33
9.024 8.153 362.183 93.980 96.166 227.76
9.458 12.041 355.342 109.003 97.088 249.58
9.880 14.562 354.305 90.812 78.063 227.68
9.417 12.145 355.237 103.415 74.306 228.71
9.596 9.927 371.651 104.736 82.895 231.44
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Table 21. Laboratory #3.

%water %protein Y, Y, Yg Y,
9.793 12.197 359.439 98.666 95.603 240.69
9.041 9.433 359.236 112.188 112.362 246.76
9.642 12.399 359.862 124.695 98.239 236.45
9.291 11.131 352.710 108.528 79.871 228.83
8.702. 8.492 357.065 101.320 77.980 496.87
9.239 10.642 355.274 99.001 69.051 215.53
8.240 7.719 362.849 101.807 77.732 218.87
9.392 10.855 358.833 100.804 90.176 235.35
9.751 11.4383 352.496 99.106 91.552 240.36
8.770 8.756 356.282 112.386 93.343 235.05

19.922 11.349 347.454 112.122 79.333 234.73

10.023 11.896 356.244 110.522 93.618 248.09
8.617 10.486 361.419 114.844 86.829 233.07
9.940 13.114 365.629 103.893 86.827 232.38
9.606 11.123 359.022 101.773 89.237 232.52
9.710 11.875 362.321 105.516 83.745 224.03

10.189 12.751 356.947 108.377 105.593 259.60
9.195 10.807 353.980 113.649 86.741 232.47
9.223 9.667 367.566 118.326 103.347 256.29
9.290 10.967 368.111 102.887 85.605 212.73

10.205 12.972 351.661 111.332 87.211 241.80
8.978 9.689 366.551 109.743 93.100 248.29
9.750 11.754 363.444 93.864 58.638 223.66
9.337 11.343 353.996 101.804 59.107 208.15
8.520 9.168 353.342 103.924 86.631 232.86
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Table 22. Laboratory #4.

%water %protein Y, Y, Ys Y,
9.876 11.350 361.071 98.751 92.966 234.93
7.982 7.043 357.446 102.212 101.313 247.44
9.418 11.213 371.641 115.846 95.013 205.60
9.312 11.544 362.329 108.342 108.691 221.69
9.336 10.203 356.611 104.971 88.191 238.11
9.911 12.331 362.733 103.933 109.624 211.02
8.901 9.180 364.714 95.691 69.253 222.48

10.610 15.823 362.227 97.951 77.481 196.23

10.222 14.026 360.708 92.043 82.649 213.55
9.122 9.800 360.809 103.675 86.720 243.81
9.274 11.909 355.541 97.750 64.096 222.68
9.370 10.396 360.044 109.418 107.305 246.57
9.503 11.284 363.197 107.813 72.439 220.73
9.413 10.803 355.723 95.075 81.208 227.14
8.841 9.418 363.989 104.684 81.694 247.47
8.985 9.283 366.016 114.356 87.268 255.32
9.422 9.138 356.419 111.076 87.246 239.48
9.705 12.496 359.176 107.020 82.956 224.48
9.482 9.752 361.304 110.318 88.489 228.38
9.7917 11.219 366.073 124.109 96.293 232.91
9.364 14.271 364.471 102.425 112.280 246.33
9.127 9.560 357.619 116.248 110.155 268.68
9.070 9.233 347.887 110.714 74.788 225.55
8.389 7.822 355.191 94.460 82.267 215.41
9.979 12.975 356.408 98.409 87.766 227.93
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Using the GLS parameter estimates the cross-covariance matrix may
be estimated (this indicates not only the covariance structure wiikin a
single laboratory, but also the dependencies belfween laboratories). This
matrix will not be reproduced her due to size limitations (matrix is 16
x 16). Having estimated the cross-covariance matrix all the previous
results of this chapter may be applied. A number of interesting
calibration scenarios are possible. For example, the conditional
calibration procedure may be applied to the situation where one of the
components (say %water) is already known for the samples sent to a
different laboratory. If measurements among laboratories are nol
independent then we can utilize the covariance structure to obtain a

more precise calibrated value for the laboratory under consideration.





