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CHAPTER II

UNIVARIATE MODELS

2.1 INTRODUCTION

Various procedures associated with statistical calibration in the
univariate case are examined in this chapter. Our discussion commences
with the problem of 'optimally' selecting the x-values in a controlled
calibration experiment followed by a review of simple linear regression
methods from a geometrical perspective. The usual notion of a vertical
projection onto the regression line will be extended to accommodate
other types of projections. This situation is most relevant to the
so-called errors-in-variables model in which both the X and Y data are
subject to measurement error. Some of the results presented in this
section have been previously derived, for example Cramer (1954) mentions
briefly the possibility of non-vertical projections onto the regression
line. A comprehensive and unifying treatment of the geometry of
least-squares and its relation to the spectral decomposition of the
covariance matrix is presented here. Fuller (1987) gives an excellent
account of measurement error models although little attention is given

to the calibration problen.
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Procedures for obtaining interval estimates will be examined and
various methods compared. Results of simulation studies are presented

and some conclusions/recommendations for the practitioner given. An

application to the problem of vehicle speed determination from airborne

observation is given for illustrative purposes.
2.2 DESIGN CONSIDERATIONS IN CALIBRATION EXPERIMENTS.

In this section we review the problem of choosing the location and
number of X-values in a controlled calibration experiment. Aspects of
this design problem have been addressed by Andrews and Herzberg (1973),
Naszodi (1978), Ott and Myers (1968) and more recently by Buonaccorsi
(1986). The following development follows closely that given by
Buonaccorsi (1986).

The design problem in calibration is associated with the selection
of X-values for the calibration experiment. This usually entails
determination of location, spacing, and degree of replication.

For the simple regression equation given in equation (1.1) we have
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Thus By =By + [ i (Xi - X (£; - & ] s;;
=1

For sufficiently large n, &

0 and we write

Bl =B, + [ 21(Xi - X ¢, ] s;;

We will assume that the errors are bounded with support on the interval
[-6,6] and that the error distribution is continuous. These assunptions
imply that E} has a continuous distribution with support on the interval

n
g, +9 ) Ixi - Xl

imi .

sxx
As mentioned in §1.3, a major criticism of the use of the classical
estimator is the problem of non-existent moments. This situation arises
whenever the distribution of Bl has sufficient probability around zero.
A sufficient condition for the distribution of Bl to be bounded

away from zero is |8, * k| > ¢ or |B;|-k > ( where
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and ( is some non-negative constant.
Letting ¢ = 0, we have
n
62x-—§
g1 - 04 FamxlL
sxx
n
s 1Bl ) I%; - | (2.2)
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Furthermore, for a < x; < b it can readily be shown [e.g. Buonaccorsi

(1986) ,p155] that

n
z I%; - x| (2.3)

s |b-a|

Now, moments for X, will exist provided

n
Elxi'xl
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However, from equation (2.3) it is established that there is no design
Iﬁ]l ' 2
6 |b-a |

for which these moments exist if

We now examine designs for which the lower bound in equation (2.3)
is attained (this choice not only ensures the existence of moments but
minimizes the chances of obtaining large deviations for |£0 - Xo]). We
consider designs having equally-spaced X-values with possible multiple
observations at each X. To this end, we divide the interval [a,b] into k

equal parts and let the number of observations at the jth position be n;

kt1
WlthE nj = 0.
i=t
Thus
x;, = a+ (§-1) (%3 (2.4)
} k *
Now,
n k+t
v _1 . _ 1
X = a_}: Xio= 3 2 B;X;
1=} }=
k+i
hence X = a+ b-a z Np(m-1) ] {2.5)
nk mel

Let s be defined such that xj-i <0 for j=1,2,...,5-1 and xj-i > 0

for j=s,s+l,...,k+l.
kt+1

n
Therefore X IX; - X| = 2 n;|X; - x|
it ist
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s-1 ktt
=.anlXj -Xl'l- .anlxl"X'
Js] }=s

k+t

Yo,; -% =0

=

s-1 k+1

2 nj(Xj - X) + 2 n)(X] -X)=0

1=1 )=8

Equation (2.6) can be written as

k+1i kti s-1
_2%“j'”=_XNmi‘m'_2N“j'm
]=1 }=8 ]=1

and combining with equation (2.5) we obtain

k+i k+t
j:[ j=5

-2
Next, consider 2 (X; = X)
iwl
k+1 9
= Xn’(x] "X)
J=
s-1 g K 9
= 2 ni(x; - ¥+ 2 nj(x; - % .
=t i=s
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(2.6)

(2.7)

(2.8)
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k+1

Now X; - X = P—;-?- [(1—1) —% Y nn(n-1) ] (2.9)
m=1

our criterion is to select a design (or desigms) for which

n

2 'xi - XI 2

j=1 = for a,b> 0, ba .
n _ 9 (b-a)

Y (x; - X

i=1

After some algebraic manipulation this reduces to

k+1 k+1 2

z n;[(3-1) - % Z np(n-1)]

j=1 m=1 = k (2.10)
k+i k+1

PRICEURE DRMISIY

)=s m=1

where s is the smallest integer exceeding

1k+l
1+ a-Elnj(J‘l) (2.11)
]B

To remove the dependency on n let p; = gi . Thus equations (2.10)

and (2.11) become
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k+t k*l
Y p;0-0 - LY pan1’
j=t m-l = k (2.12)
kti k"‘l
Y p;[(-1) - ) pala-1)]
j=s m=l
K
1+= 2 p;(3-1) (2.13)

1=l

Designs for which the criterion of equation (2.12) are satisfied

are three-point designs for which

p, = i DPk+1 = ; Pkt2 = (1-a) where 0 < o £ 1,
2

iR

a
2

assuming k is even {odd k pose no problem).

To see this we first determine s using equation (2.13). Thus

k+1
1LY p0-0 =1+ @+ ER - ¢ 6]
i1

=l_{.+1
2
Therefore s is 2 + % = E%i

Now, the left-hand side of equation (2.12) is

@ k1% (1-0) [k - k24 @ ky2
5 [0-2] + (1-a) [2 2] + > [k- 2]

2 k
” [k-2]

=k (QED) .
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Note, this three-point design can be reduced to a two-point design
if we let @ = 1. Thus, in its simplest form the 'optimal’' design for a
controlled calibration experiment is to take % readings at x=a and %
readings at  x=b. For completeness we demonstrate that an

equally-weighted (k+1) point design does not possess this ‘optimality'.

For this case

n] = F]- VJ.
_ 1
3 Pj = T Yi.
and thus
k+1 X
2 Pj(J’l) = ;
=t
with
1+ k k even
8 = 2
1+ 551 k odd
Without loss of gemerality we assume k to be even and hence s = 553 .
Now
k+1

Y- - 59
j=1 2

k+1

2
= ¥ tg-0? - 2k + % ]
j=1




Fox, D.R. Statistical Calibration: Theory and Applications

_ k3 + 3k? + 2k
12
and
k+1 .
Ckea 2 8
L

Hence the ratio in equation (2.12) is

kt1 k+t

1 yros k .2 : k .2
Y EPEmD - PREEUEES
1=1 = 1=l
k*1 1 " k+1 "
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(2.14)

(2.15)

Substituting equations (2.14) and (2.15) into the above we find that

this ratio equals

2 k3 + 3k? + 2k
3k?2+6k +8

which is always less than k.

2.3 THE GEOMETRY OF LEAST SQUARES

The usual requirements of ordinary least-squares (OLS)

curve-fitting is that the independent variable (invariably identified as

X) is measured without error and, unlike Y, is not assumed to be subject

to random variation. In other words X is a deterministic variable while

Y is a random variable.
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Furthermore we usually assume Y to follow a normal distribution when
inferences about the estimated regression line are to be made.

It is not inconceivable that there are many practical situations in
which the above assumptions simply do not hold. In this section the
problem of simple linear regression when both variables are subject to
error is examined. It is noted that OLS is just a special case of a more
general regression methodology in which we allow the X,Y data to be
projected at any angle onto the regression line.

When the OLS conditions are met then the x,y data are projected
vertically and the least-squares criterion seeks that regression line
which minimizes the sum of the vertical distances squared. If we take
the other extreme where all the error is in X and Y is measured without
error then we can simply interchange the roles of X and Y in our
original regression formulation. This is equivalent to minimizing the
sun of the horizontal distances squared. In the case where there is

error in both X and Y it would seem appropriate to project the x,y data

1
at an angle somewhere between 0 and 7 the actual value depending in

some way on the ratio of the error variances.

For the present situation we assume the regression model :

Y, = B, + B,X; + & (2.16)

At this stage we make no assumptions about the distributional properties
of ¢ since our treatment (at least initially) will be purely

data-analytic and not inferential.
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Consider a typical data point (x;,y;). Figure 2 shows the point

(x;,¥;), its relation to the regression line and the various angles

involved.

In the following development we will assume that the X,Y data have
been centered at their respective means i.e. X* and Y* will be used to
denote the centered values X-X and Y-Y respectively. After such a

transformation the regression equation in equation (2.16) reduces to

Y= g%, + €] (2.17)

where & =¢; - and I-= % Z £
i=z1

With reference to figure 2, (Ef,?f) denotes the projection of the
point (x,,y;) onto the regression line, & is the angle of projection, 7
is the angle the regression line makes with the line segment joining
(x?,y?) and (;t,?f) and ¢ is the angle the regression line makes with
the Y* axis.

Now, from elementary mensuration we have that the angle ¢ formed by

the intersection of two lines having gradients v, and v, is given by the

following equation

Vy - Vg
(2.18)

tan(y) = 0,7,

Since the Y-axis has slope v,=m e use the linmiting form of equation

(2.18)
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Figure 2. A typical data point and its projection onto
the regression line.
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u
ve - Vi 1 - vy 1
lim { — ] = lim [ E— ] = = (2.19)
- 1+ vive Vo 1 + vy
vy
Thus,
.1, L
¢ = tan ( 2y) (2.20)
and
y=7w-6-¢
-1, 1
3 y=m-8-tan () (2.21)

Vs ~ El

By equation (2.18) we have that tan 7 = 1 + vafy where ﬁl is the slope

1
-1
of the regression line. But tan 7 = tan[#-@ + tan ( B,)1. Using

elementary trigonometric relations we have

1 1
tan[mr-6 + tan_‘( Bl)] = -tan 8 + tan-l( B)
1

and

1

L, 1 tan(® + tan[tan” ( Bi)]

tan 6 + tan ( B ) =
1

1-tan(0)tan[tan-l( %l)]

1
tan(9) + By

- 1
1 Bl tan(O)
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Therefore
1 + Bitan(9)
tan('}') = ﬁl - ta.n(e) (2-22)
. . ve - B
However, using equation (2.18) we also have that tan(y) = [ﬂ—tan(&)

where v, is the slope of the line segment joining (QT,§?) and (§i,§i).
Thus equating this expression for tan(y) with equation (2.20) we obtain

the following relation

ve ~ By 1 + Bytan(8)

1+ By, = B, - tan(6) (2.23)

~k %
. R Yi - yi vk ~k . .
Substituting v, = - and y; = B x; into equation (2.23) gives
X; m X5 !
v = -cot(f) (2.24)

ok ok ot
_Yit¥ Bxi -y 5 . .
Now v, = py 5 = ox - = -cot(8) from which we obtain the
X3 % X - %

transformation equations

* %
o Yi * xjoot(d)
2* = (2.25a)

Y B+ cot(d)

and
ik ﬁly? + xfﬁlcot(o)

i B, + cot(6)

(2.25b)



Fox, D.R. Statistical Calibration: Theory and Applications PhD Dissertation
28

The transformation represented by equations (2.25a) and (2.25b) can

be conveniently written in terms of the corresponding projection matrix:

1 cot () 1
? = Bicot(@ | fcot(d) B, (2.26)

2.3.1 ORTHOGONAL PROJECTIONS

The special case where the data are projected orthogonally onto the

regression line is considered next. This situation is depicted in figure
a'b

3. The point p in figure 3 is given as p = — a and substituting a =
aa

(x*.ﬁlx*), and b = (x?,yf) we obtain

x*x? + ﬁlx*y? x"
*
p= x*2(1 + ﬁﬁ) ﬁ'x

1+8H |8

? = -
¥i 1+ 8H ﬂ,x’: + ,ny"i‘

The corresponding projection matrix is easily seen to be

* *
i + Biyi [ 1 ]

and hence

5 L o]
Pz — .
a+ph |8 &
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b=(x,Yi)

Figure 3. Orthogonal projection of a point onto
the regression line.
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Notice that the same result is obtained by letting 7 = % (see
figure 2) : y=m - 0 - ¢ and with v = % we have & = % - ¢
3 tan(8) = tan(g -¢) = cot(g)
but by equation (2.20)
b= ran
= tan (3)
By
-1 1
hence cot(¢) = cot tan (B ) = B
1
1
and tan(9) = B, ¥ cot(f) = (E ) (2.27)
1

Substituting equation (2.27) into the projection matrix given in

equation (2.26) we obtain

1
(6, + B 1 By
1 B, ]
P = 1 [ : as before.
1+ 8 {8 6]

2.3.2 THE 'OPTIMUM' PROJECTION ANGLE

As has already been alluded to there are infinitely many ways of

arriving at a so-called least-squares fit to the experimental data with
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any particular regression line being determined by the angle of
projection. Vertical and orthogonal projections are simply two
possibilities. Thus if one ignores the usual statistical considerations
which dictate the fitting via OLS and allow ¢ to assume any value then
we may reasonably seek an ‘'optimal' angle of projection. Not
suprisingly, it will be shown that this situation corresponds to the
orthogonal projection just discussed.

The length of the vector connecting the point (x:,y;) with its
projection (5;,?;) is (;: - x:)2 + (?I - y;)z. Thus our least-squares

criterion becomes

P o ~nk x 2 ok ~k 2
mininize Q =.zl(xi - xi) + (ﬂlxi - yi) {2.28)
1=
wk x ¥;- ﬂlxi
Now, (xi - X,) = (2.29a)
Bytcot (6)
and
~k ~k
ok * (ﬂlxi - yi)
B tan(6)+1
n * * * *
y. - B.x, -2 fix, -y, 2
Thus Q= 2 q [—i—l—L] + [—‘—1———-—-1——] H (2.30)
i=1 ﬂ1+c0t(0) ﬂltan(0)+1

We now take partial derivatives of Q with respect to both # and f,.
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First with respect to 6 :

* x 9 *
Doy, - Ax;) gix: -y,
6_Q_= 0 o q i %3 . 1*i i ﬂ

from which we obtain

81 + cot(D ]3

ﬂltan2(9)[ R
1 + B ,tan(6)
or

3 3
[1 + B tan(8)] = B tan’(6)[B, + cot(6)] .
Letting tan(f) = z this last expression becomes

3 3
(1 + B2) @z%ﬁl+%)

é%(ﬁlz + 1)3

3
3 (1 + Bjz)

Choosing the root which makes physical semse for this problem we find

that
z = B 3 tan(8) = j, (2.31)

which, as was shown in the previous section corresponds to the
orthogonal projection case. Note, the other real solution to equation
(2.31) is z = tan(f) = -1/B, which represents a line perpendicular to
the orthogonal projection (as is shown later, these two lines correspond

to the eigenvectors of the X,Y covariance matrix).
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The relationship between Q, ﬁl, and v (angle projection makes with the
regression line) is graphically illustrated in figure 4. It is apparent
from figure 4 that the minimum for Q is attained at v = * 1.57 radians
(i.e. % ) as has just been demonstrated.

We next take the derivative of @ with respect to ﬁl.

First observe that Q can be rewritten as follows :

* * * *
Q= i q [ y; - ﬂ,xi ]2 . [ ﬁ,xi - ¥ ]2 g
i=1 B +cot (6) f tan(6)+1

n
1 ® *, 2 2
= [y: - B,x:1 [1 + tan (8)]
[1+ ﬁltanw)]2 izl ' s ,

9 n
= sec (9) [y? - ﬁlx?]2 (2.32)
[1 + B tan(®)]? ;5

Incidentally, when & = 0 equation (2.32) reduces to

n
' * %, 2
Q = Z [Y1 - 'lei]
i=t
which is the usual least-squares criterion.

Returning now to equation (2.32) we have

.6_Q..=O:)

68,

2
_2sec2(9)tan(9) i [y* -8 x¥]2 . sec (8)
1 1
1

[1+ [J’ltan(e)]3 is

[1 + B,tan(8)]%i5
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Plot of Q vs. Betal and Gamma

’Jﬂaziiigiéiigggisigi;
iy g sz
17 NSNS

1.57

Figure 4. Relationship between error sum-of-squares (Q),
the slope of the regression line (Bi), and the
angle of projection (7).
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n
sin(6) ¥ (v} - BxD”
3 i=1
[cos(6) + B,sin(8)]

n n
*® % *
+ z (xiYi) - '31 in2 =
i=1 i=t
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0

n
3 ﬁl[sin(9)xfy? + cos(9)x?2] + 2 [sin(9)y?2 + cos(G)XTyT] =0

i=1

Thus,

n n
sin() z vi2 + cos(6) 2 X1y,
ﬁl = i=1 i=1

n n
cos (6) 2 x?z + sin(6) 2 x?y?
i=1 i=1

Note, when 8 = 0 equation (2.33) reduces to

2.3.3 RELATIONSHIP TO THE SPECTRAL DECOMPOSITION OF THE

COVARIANCE MATRIX.

Let € denote the sample covariance matrix i.e.

(2.33)

B, = i=t which is the OLS estimate.
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Furthermore let e = [el,e2]T be an eigenvector of € and hence {e =
Ae where A is the corresponding eigenvalue. Now e = [/\el,,\ezlT and the

gradient of the line from the origin to the point (Ael,Ae2) is equal to

B, = ey _ es
1
/\E] &1

But,
e [ Syx sxy] [ e ] [ e,Sxx * €,5xy ] .
- = an SO
- e
Sxy Syy 2 e, Sxy t e,Syy

Bl _ €28yy + e1Sxy (2.34)
elsxx + ezsxy

Thus equating coefficients in equations (2.33) and (2.34) we see that

e, = sin(8) and e, = cos (&)

cos (6)
g:
sin(9)
P . _ sin(6) _
rom which we observe El = Zos(0) - tan(6) .

However, in section 2.3.1 it was shown (equation (2.27)) that for an
orthogonal projection ﬁl = tan(8). We are therefore led to conclude

that the eigenvector corresponds to a least-squares fit when the data



Fox, D.R. Statistical Calibration: Theory and Applications PhD Dissertation
37

are projected orthogonally onto the regression line. Rather than perform
the spectral decomposition of € we can obtain an expression for ﬁl from

previous equations. Equation (2.33) is reproduced below :

n n
sin(6) 2 yi2 + cos(8) 2 <y}

ﬁ‘ = 1;1 1;1
cos (6) 2 x?z + sin(6) 2 xfy?

i=t i=t

Dividing through by cos(8) we obtain

B = tan(e)sVV + va
1
Sxx + tan(d) Sxy

but, as has already been established for a perpendicular projection

s

By = tan(6). Substituting into the expression above for tan(§) we have

~

_ BiSyy * Sy
= BiSvy  Sey

Sxx + BSxy

This is a quadratic in Bl for which the solutions are given as

2 2 i
;Bl _ (Syy - Sxx) * [(Syy = Sxx) + 4Sxy 1° (2.35)
254y
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2.4 CALIBRATION AND MEASUREMENT ERROR MODELS.

We now examine the use of various calibration techniques in the
presence of measurement error in X. The basic measurement error model as

defined by Fuller (1987) is

Y, = 0Byt Byx; t ey
Xi = xi + ui (2.36)
with
x1 ,‘X
ei| ~ N(u.,%) and p=| ¢
uj 0
2
where Y =diag(ai ,az ,oﬁ)

In this representation x;i is a true (unobserved) random variable and X;

ig the observed measure of x;j. Some properties of this model are now

developed.

2 . ' 2 .
Let o, be the variance of the Y;'s , Oy = Cov[X;,Y;] and

a; = Var[X;] . Furthermore, py = EIX;] = Elx;+u;] = p, and
Py = E[ﬁo+ﬂlxi+ei]=ﬂb+ﬂlﬁx .
Now,

cov[xirYi] = E[(Xl - ﬂ»x) (,30"’ 'lei te; - ,30 - ﬁl'u'x)]
= E{ [xl - ﬂx] [ﬁl (xi- ﬂx) + ell}
= BEL(X; - p) (xy = p )] + ELX; - pde;]




Fox, D.R. Statistical Calibration: Theory and Applications PhD Dissertation

39

the last expectation is zero by the (assumed) independence of X; and e;

thus
CoviX;,¥;] = BiEI(X; - p)(x; - p)]
but Py = My and X; = x; + u; therefore

Cov[Xi,Yi] = ﬁ]E[(xi'i' u,;- ﬂx) (Xi - [Jx)]
= 'BIE[(xi - #x)2 + ui(xi - [J,x)]
= ﬁ,G: + BiElug(x; - p)]

again, by the independence of u; and x; the last expectation is zero,

and hence

Covix; ¥;1 = B0 (2.37)

Moment estimators for the parameters of this model are readily
ie sp s 2 . .
obtained if it is assumed that oh {measurement error variance) is known.

The defining equations are

FY = :30 + ﬁ]”x
Hg = Hy

o3 = Bial + o2
o%y= Pi%%

o =02+ a2
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Starting with the last equation first and working backwards we can
successively solve the above system replacing the the population values
with their corresponding sample estimates. The following moment

estimators are obtained :

2 _ _ 2
ok SXx o
2 SXY
b= —
xx = %

1
|

>
<
l
<
i
=
>

) . , ~9 ~9
Since it is required that o, > 0 and 9, > 0 we have

2
S -g >0
u

SXY

and SYY - '6ISXY >0 3 SYY > -s-—-———d2— .
XX u

Note that the first constraint is made redundant by the second and

therefore the requirement becomes




Fox, D.R.

Statistical Calibration: Theory and Applications PhD Dissertation
41
Sy (Sqy = 02) = Sy > 0
vv'°xx T % XY .
Estimation of the true, unknown x may be handled using a GLS
estimator.

Writing the model in matrix form we have

e ]

Z=8zx+¢

or

then the GLS estimator for x is
x = 10y a7y 'z (2.38)
X = 2% 2% .

with
A -1, ~1
var[x] = (8%, Bl
where

2% is the covariance matrix of [e;,u;] .

2 2
If 2% is the diagonal matrix (aé,ah) then equation (2.38) reduces to

B Xi
L o Wi B) o
x = 22 Ju (2.39)

|
ﬂqm |
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The errors in both variables presents no special difficulties for
the calibration of x . The techniques of classical or inverse regression
apply equally well in this situation although we mention an alternative
estimator for the calibration of an unknown X as proposed by Fuller
(1987).

The model of equation (2.36) can be rewritten as

Y=yt e

where y; = ﬂb + ﬁlxi is the "true" y-value corresponding to the true

%;. Thus, the m.l.e. for some unknown x, is
Yo - Bo
Xo = = Yot MY
0 0 0
Bl 1
where

1
Yo =~ —g% and Y = E: .

Hence, 7, and 7, are parameters relating the regression of true y-values
on the true x-values (neither of which are known). A future calibrated

value of x (x,) corresponding to a reading y, would be obtained as

-~ A

g = Yp * :r,Yo . (2.40)

Previous estimates for §, and B, could be used to obtain estimates for

Yo and v, using
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By b

however, as has already been noted, moments for these do not exist
{under OLS conditioms).
Fuller (1987) suggests the following modification which yields an

estimator having finite mean and variance.

2 2
N (s - 08 + -—:—SG' "
y, = XX u 1XY (n-1) XY u if Ao 1
Sxyy * o=D) [SxxSvy ~ Sxv!
or
R S
Y = XY otherwise
SYY
2
(SXY)
where A= 3

An estimator for the variance of ;1 has also been provided by Fuller

(1987,p178) .

2.5 A_COMPARATIVE STUDY OF POINT ESTIMATORS FOR THE MEASUREMENT ERROR

MODEL.

We now present the results of a monte-carlo simulation in which
four different methods of calibrating in the presence of measurement

error are compared in terms of bias and efficiency.
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The methods chosen are : (i) the classical estimator (ii) the estimator
based on an orthogonal projection (iii) an estimator proposed by Mandel
(1984) and (iv) the estimator suggested by Fuller (1987). Estimator
(iii) has not yet been discussed. We digress momentarily to provide
details.

Mandel (1984) proposed the following estimator for the measurement

error model :

Define :
2
A= Ze
L
and
2
6 = pA% where p is the correlation between Tq and
2
au L

The proposed estimator for ﬁl is :

As.) 2 - aq ) (B5y - "va”%

vy - Mgx) * [(Syy = ASyy

2(SXY - GSXX)

N (s

Sqy —68
3, = XY 7°xx

(2.41)

It is noted that when A=1 and 6=0 equations (2.35) and (2.41) are
identical.

, . 2 9 2

For the purposes of simulation the parameters p, oE, ah, and ak

were each varied over three levels to yield a 34 factorial experiment.

B, was held fixed at 0.5 and ﬁ] at 1.0 (these being reasonable choices
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in a calibration setting). p assumed the values 0.0, 0.5, and 0.95 which

represent no correlation, mild correlation, and strong correlation

2 2 2 ,
respectively. aé, ah, and ok were each varied over 0.5, 4.0, and 25.0 -

these representing approximately 2.5% , 20% , and 50% coefficient of

variations for both the Y and X data (;t.x was held constant at 10.0). For

each of the

Step 1

Step 2

Step 3

Step 4

Step §

81 treatment combinations the procedure was as follows :

(33

Generate 101 values froT‘zzsl N{(0 ,I). These form the
X

. 2 2
basis for ¢ and ¢_ .
e u

. . 2 2
Impose the required covariance structure on A and o, 3

follows :
2
% PTe% T
Given E% = 9 = QDQ where the columns
PI% %

of Q contain the normalized eigenvectors of !% and D is
the diagonal matrix of corresponding eigenvectors ,

conpute [e,u] as Z A’ where A = QD% .

Generate 101 observations for the x; from N(ux,ai).
Compute X; = x; + u; and Y; = By + Byx; + e .

Using the first 100 observations, estimate B, and pf,
using each of the four methods to be compared. The last

observation (Y,,,,X,o,) is then used for calibration and

the result (i,o|) compared with x,4, .
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This procedure gives one observation on (ﬁo - x,) for each of the four
methods. Steps 3 to 5 are then repeated another 199 times for each
treatment combination. The bias and MSE are then computed from the 200
observations for each treatment combination.

The entire simulation has been programmed using the matrix-based

language GAUSS. A listing may be found in Appendix A.

2.5.1 RESULTS.

Results from the simulation run are displayed in tables 1 and 2. It
is readily apparent that there is little difference in
performance of Fuller's estimator and the classical estimator with
respect to both bias and MSE. One is lead to the conclusion that the
modification suggested by Fuller is of more theoretical rather than
practical significance. We would therefore elect to |use the
computationally simpler classical approach in practice. Also obvious
from table 2 are the two missing values reported for treatment
combination p=0.95,00=4.0,0°=0.25,0.=4.0 (labelled as 3,2,1,1) and
p=0.95,a§=25.0,0i=0.25,oﬁ=4.0 (labelled as 3,3,1,1). These observations
are not in fact missing however their actual values are so large as to
mask all other numbers in the table were they to be included.
Interestingly both of these ‘'outliers' are associated with Mandel's
procedure and one must therefore question the validity of this procedure
under the condition of highly correlated errors and large error
variance. Examination of the corresponding entries in table 1 also

reveals exceptionally high bias. We now examine the bias and MSE data in

more detail.
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Table 1. Bias data for estimators (i) - (iv) obtained
from simulation.

CONTROL: rho = 1
ROWS: var-e - COLUMNS: var-x / var-u

i 2 3

i 2 3 1 2 3 1 2 3

-0.06219 0.03179 -0.01604 0.07610 0.02214 0.05650 0.01543 -8.02199 0.00876
-0.06278 0.03142 -0.01595 0.07150 0.02558 0.05648 0.01658 -0.01929 0.00896
-0.0628 0.0312 -0.01%9 0.0715 0.0285 0.0565 0.0166 -0.0169  0.0092
-0.0622¢ 0.03162 -0.01583 0.07591 0.62319 0.05646 0.01548 -0.02110 0.00919

—

2 -0.06087 -0.10434 -0.04820 0.25071 0.12507 -0.05756 -0.20727 0.11790 0.14463
-0.01933 ~0.10445 -0.04496 0.11510 0.11801 -0.04497 -0.21801 0.09764 0.14960
-0.0204 -0.1044 -0.0431 0.2296 0.1100 -0.0366 -0.2087 0.0976 0.1539
-0.03980 -0.10450 -0.04762 0.24680 0.12433 -0.05572 -0.20748 0.11697 0.14578
3 -1.00512 -0.03520 -0.18277 -0.01898 -0.34484 -0.35412 0.09743 -0.05739 0.53742

0.02956 0.08530 -0.14026 -0.09484 -0.08895 -0.30093 0.109¢1 -0.025¢6 0.50000
-0.2036  0.0558 -0.1403 -0.0285 -0.2062 -0.3009 0.0971 -0.0478  0.5600
-0.07901 0.00355 -0.18085 -0.01227 -0.32431 -0.35203 0.09717 -0.05677 0.53572

CONTROL: rho = 2
ROWS: var-e COLUMNS: var-x / var-u

1 2 3

{ 2 3 1 2 3 1 2 3

~0.03977 -0.00653 -0.03390 0.00730 -0.01233 0.01002 -0.04221 -0.02982 0.01248
-0.03199 -0.00656 -0.03386 0.60978 -0.01538 0.01089 -0.04397 -0.02946 0.01216
-0.0301 -0.0066 -0.0338 0.0099 -0.0186 0.01i8 -0.0440 -0.0290 0.0118
-0.03936 -0.00655 -0.03383 0.00739 -0.01364 0.01169 -0.04228 -0.02975 0.01184

—

2 -0.04854 -0.10869 0.01515 0.18918 0.05032 0.01053 0.05686 0.06090 -0.08582
-0.02365 -0.09195 0.01365 0.09166 0.02752 0.00150 0.026¢4 0.04242 -0.06741
-0.2181 -0.0874 0.0129 0.2109 0.02i6 -0.0055 0.0618 0.0403 -0.0516
-0.04757 -0.10754 0.01500 0.18660 0.0492¢ 0.00881 0.05619 0.06008 -0.08270
3 -0.19161 0.34094 0.09933 0.43562 -0.04430 0.51056 -0.35480 -0.00285 -0.11778

-0.02874 0.17736 0.08562 ~0.01617 -0.14885 0.40091 -0.14806 -0.03408 0.01513
-1.1600 0.1811 0.0819 0.7074 -0.1238 0.3713 -0.3802 -0.0015 0.0487
-0.18406 0.33384 0.09818 0.39583 -0.04791 0.50378 -0.34872 -0.80357 -0.11130

CONTROL: rho = 3
ROWS: var-e COLUMNS: var-x / var-u

1 2 3

i 2 3 i 2 3 1 2 3

1 0.02378 0.0016! 0.02577 0.00734 0.01476 0.00869 0.01187 0.01129 0.05084
0.02508 0.00169 0.02576 0.00679 0.01574 0.00865 0.01265 0.01010 0.05108
0.0277 0.0018 0.0258 0.0035 0.0170 0.0086 - 0.0130 0.0084 6.0513
0.02392 0.00175 0.02576 0.00733 0.01536 0.00863 0.01190 0.01091 0.05130

2 0.08912 -0.07846 0.06349 0.02805 0.02850 -0.1923t 0.02208 -0.09614 0.01874
0.06073 -0.07621 0.06299 0.04354 0.01381 -0.19349 0.02572 -0.12639 0.02688 '
5.1866 -0.0734 0.0624 0.0150 -0.0157 -0.1947 0.0197 -0.2273 0.0379
0.08827 -0.07779 0.0627¢ 0.02839 0.02733 -0.19321 0.62215 -0.09758 0.02126

3 0.09746 -0.02164 0.14469 0.37870 -0.12506 -0.07835 -0.33713 -0.23816 0.09189

0.07067 -0.01730 0.14039 -0.05197 -0.10631 -0.08022 -0.12636 -0.09319 0.08845
21,1917 -0.0180 0.1353 1.7885 0.2557 -0.0828 -0.4062 -0.5388 0.0838
0.09664 -0.02125 0.14293 0.35730 -0.12445 -0.07854 -0.33143 -0.23468 0.09170
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Table 2. Mean square error data for estimators (i) - (iv)
obtained from simulation.

CONTROL: rho = 1
ROWS: var-e COLUMNS: var-x /| ver-u

1 2 3
i 2 3 1 2 3 1 2 3
1 0.240 0.265 0.287 0.218  0.284  0.246 0.236  0.239  0.243
0.1637 0.2497 0.2343 0.2051 0.2742 0.244$ 0.2361  0.2373 0.2419
0.166 0.238 0.232 0.205  0.268  0.243 0.23  0.23%  0.241
0.235 0.260 0.232 0.217 0.280  0.243 0.235 0.239  0.242
2 6.864 2,926  4.003 6,95  3.98%  4.127 3,482 3.441 3.467
0.2501 1.2368  3.4232 2.4742  2.5958  3.6157 3.079¢  3.0125 3.2526
1,88  1.237  3.09% €.622 2.596  3.341 3.413 3013 3.160
6,457 2,817 3912 6.844  3.905  4.045 3,468  3.418  3.429
3 466.429 28,976 28.377 35.577  25.916  30.647 21,782 25.264  29.412
0.2823 1.0118 10.1270 3.3676  4.4287 13.5089 12,2542 15,3540 18.4551
116.738  3.717  10.127 31,426 10.304  13.509 21,381 20.437 . 18.435
8,268  24.190 24,392 28.84% 23.810  29.539 21,330 26.75 28.777

CONTROL: rho = 2
ROWS: var-e COLUMNS: var-x [ var-u

1 2 3
1 2 3 1 2 3 1 2 3
1 0.187 0.233  0.24% 0.246  0.242  0.257 0.258  0.25%0  0.277
0.1566 0.2253 0.2328 0.2619 0.2640 0.2562 0.2563 0.2541 0.2772
0.151  0.219  0.23 0.242  0.247  0.28% 0.25  0.260  0.278
0.185  0.229 0.23 0.246  0.243  0.285 0.258¢  0.251 0.278
2 1,032 .15 2.636 2,922 2.808  3.575 3726 6217 3944
0.289 1.4126 2.4082 2.1076  2.2752  3.3071 3.3766  4.1453  3.8833
8.240  1.247 2,249 3.251  2.18t 3.2 3.809  4.155  3.870
0.990  2.092  2.582 2.886  2.775  3.518 L3 62100 3,929
302,093 &.473 11357 18,590 11.078 12.987 28.530 17.862 15.489
0.3364 1.3823 7.3480 §.2990  4.8691  9.0245 15,2703 12.4137 12.4327
248.668  1.538  6.439 37.546  7.796  8.139 31,240  18.629 11.924
1,901  4.298  11.054 16.608 10.774 12.710 27.975 17.637 15.295

CONTROL: rho = 3
ROMS: var-e COLUMNS: var-x / var-u

i 2 3
i 2 3 1 2 3 1 2 3
1 0.112  0.172  0.215 0.211  0.281  0.220 0.272 0.282 0.315
0.1055 0.1712 0.2148 0.2059 0.254¢ 0.220t 0.2707 0.2869 0.3165
0.102 0.170 0.215 0.217  0.25%  0.220 0.271  0.295 0.318
0.112  0.471  0.215 g.211  0.2583  0.220 0.272  0.28¢  0.318
2 0.660 1045 2.462 3.050  2.428 2,494 £.159  3.696  3.438
0.4035 0.9917 2.4343 2.2216  2.2830  2.4599 3.9390  3.7648  3.4729
- 0.929  2.405 6,908 2,156 2.423 4.466  5.03%  3.542
0.650  1.027  2.420 3.022  2.416  2.467 £.151  3.696  3.447
30 0.813  2.469  6.441 13.719  6.240  9.105 20.805 15.747 16.091
0.3922 2.1400 6.1708 3.8173  4.4490  8.4798 12.1426 12.3019 15,6255
- 1.698  5.856 177.990 32.960  7.721 25.805 52.421 15.492

0.796 2.428 6.311 12.978  6.161  8.970 20,446 15.622  16.047
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2.5.1.1 BIAS.

Broken down by p :

7~0.0

classical ~-0.04048
orthogonal 0.00841
Mandel 0.0008

Fuller -0.00287

2
Broken down by g, :

2
0é—0.25
classical 0.00488
orthogonal 0.00525
Mandel 0.0054
Fuller 0.0050

2
Broken down by g, @

2
ah—0.25
classical -0.02153
orthogonal -~0.00558
Mandel 0.9958
Fuller 0.01197

Broken down by ai :

2
ak-0.25
classical -0.04114
orthogonal 0.00416
Mandel 0.9179

Fuller -0.00458

p=0.5

0.02519

0.00722
-0.0155

0.02369

2
o =4.0
e

0.00678
-0.00376
0.1842

0.00735

2
oh-4.0

-0.01935

-0.01279
-0.0244
-0.1753

2
o.=4.0
X

0.03638
-0.00491
0.1076

0.03453

PhD Dissertation

49
p=0.95 A1l
-0.00180 -0.00570
-0.00669 0.00298
1.0142 0.3332
-0.00235 0.00616

2
aé—25.0

-0.02874

0.00745
0.8099
0.00613

0°=25.0
u

0.02380
0.02730
0.0281

0.02404

0°=25.0
X

-0.1233
0.00969

-0.0260

-0.01147
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With respect to the above tabulations we note the following :

(1)

(ii)

(iii)

(iv)

{v)

overall, the orthogonal estimator has the smallest

absolute bias while Mandel's procedure has the largest.

the bias associated with Mandel's procedure gets
progressively worse with the severity of violation of the

independence assumption.

the bias of the orthogonal procedure is relatively

unaffected by the violation of the independence

assumption.

the bias of Mandel's procedure increases steadily with
2

increasing error variance (aé). The other estimators show

little variation with respect to changing levels of this

parameter.

there appears to be no real effect on the bias due to
. , 2
changing levels of the measurement error variance (ah) or

the variance of the unobserved random variable x.
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2.5.1.2 MSE.

Broken down by o :

~0.0
classical 26.994
orthogonal 3.845
Mandel 10.160
Fuller 9.273

2
Broken down by 0. :

0°=0.25

e
classical 0.239
orthogonal 0.2324
Mandel 0.232
Fuller 0.238

2
Broken down by oy ¢

07=0.25

u
classical 23.741
orthogonal 2.672
Mandel 4180.0
Fuller 6.270

Broken down by oy ¢

9
ak—0.25
classical 21.263
orthogonal 1.622
Mandel 4168.0

Fuller 3.942

~0.5

5.617

3.4343
15.043

5.449

2
o =4.0
e

3.248
2.5228
140.0
3.122

ai=4 .0

7.273
3.0271
13.0
6.757
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p=0.95 All

4.336 12.314
2.3261 3.5318
4165.0 1397.0
4.263 6.328

2
aé—25.0

33.454
7.8402
4050.0
15.626
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The following observations are based on the above MSE data :

(i)

(ii)

(iii)

{iv)

overall, the orthogonal estimator has the smallest MSE
while Mandel's procedure has the largest. It is
disturbing to the practitioner to observe such extrenme
departures from the true calibrated value that are
possible using Mandel's procedure. Again, this problem is
most severe when the violation of the wusual OLS

assumptions is most extrenme.

whilst the similarities between Fuller's method and the
classical procedure have already been noted, it is
nevertheless apparent that the latter results in an

overall reduction in MSE of approximately 50%.

2
all estimators show a steadily increasing MSE as 7,
increases, although the orthogonal procedure has a MSE

which is consistently less than all of the others.

there is no obvious trend between MSE and changing levels
of the measurement error variance (with the possible
exception of the orthogonal estimator which shows a
steady increase in MSE as oﬁ increases). The same

2
comnnents apply to oy -
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The foregoing comments are perhaps better appreciated when
considered with the visual displays provided in figures 5(a) to 5(c) and
6(a) to 6(c). We now subject the data to closer scrutiny and formally

test the assertions made above.
2.5.1.3 ANALYSIS OF VARIANCE.

We next apply standard analysis of variance procedures to make
inferences concerning the possible effects of the four factors
considered on the bias and MSE of each of the four estimators. The
computations associated with this aspect of the simulation study were
performed using the SAS ANOVA procedure. For the sake of brevity,
computer output has not been reproduced here, only final results are
given.

With respect to bias, none of the estimators examined showed any
main effect in the four factors (a <0.05). The MSE data was transformed
prior to analysis in an attempt to remove the skewness of these
distributions. The actual transformation employed was MSEpew =
(MSEold)%. The subsequent analysis of variance suggested a significant
difference between calibration methods (p=0.0179) and a significant
effect due to the residual error variance (ai) (p=0.0001) . All remaining
effects were judged to be insignificant with the exception of a possible
interaction between p and the calibration method used (p=0.0339).

Multiple comparison procedures (Duncan and SNK) indicated the following

.

groupings for the four procedures : {orthogonal} ; {classical,Fuller} ;

{Mandel}.
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Figure 5(a). Histogram of Figure 5(b). Histogram of
bias for classical estimator. bias for orthogonal
estimator.
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bias for Mandel's estimator. bias for Fuller's

estimator.
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Figure 6(a). Histogram of Figure 6(b). Histogram
MSE for classical estimator. MSE for orthogonal
estimator.
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MSE for Mandel's estimator. MSE for Fuller's
, estimator.
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2.6 INTERVAL ESTIMATION.
Developments associated with interval estimation in calibration
problems were discussed in chapter one. We now examine the performance

of five different approaches to the interval estimation problen.

2.6.1 THE CLASSICAL INTERVAL ESTIMATE (I).

Let J,(x) be the (1-a)100% prediction interval for response y i.e.

- - 1, (x A
= v + = 4 AR0 7 &)
Jy(x)=y = tn-z.alz aé[l *o# sxx ] (2.42)
~2 SSE
= 222Y
where 9 = 73
and SSEy= (¥ -n'(Y-1.
Then the confidence interval for X, is Koly) = {x| y € Jy(xy)}

(Carroll, et. al., 1988). This procedure is illustrated in figure 7.
2.6.2 THE INVERSE INTERVAL ESTIMATE.

The procedure for use with the inverse estimator is essentially the
same as that for the classical estimator, except the roles of X and Y
are reversed. Let the parameter estimates obtained from the regression

of X on Y be denoted %o and %1 for the intercept and slope respectively.
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(1-a ) 100% Prediction Band for 90

Figure 7. Graphical illustration of the procedure for
obtaining confidence interval for Xo in the
classical regression case.
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Then a (1-2)100% confidence interval for a calibrated X, is :

= 244
> e 1, 0oy
+ 2 4 X0 X7
Xo 2t . a/y aé[l tot 5 (2.43)
Yy
~2 _ SSEx
where I = =3

SSEy= (X - X) (X - X).

- A

and Xo = Y * NYo -
2.6.3 THE CLASSICAL INTERVAL ESTIMATE (II).

Graybill (1976,p283) suggests the following interval estimate for

use with classical regression.

_> 293
a(l + %) + o - ¥) ] (2.44)

SXX

Py 'al (YO"y) + f;e
+ X
X a a ‘n-2.0/9

where
32 _ 0% tn-2.0/2
1

]
XX

a =

2.6.4 THE CSS INTERVAL ESTIMATE.

Carrol, Sacks, and Spiegelman (1988) provided an alternative to
Scheffé type confidence intervals. Scheffe (1973) suggested replacing

the J,(x) of equation (2.42) with prediction bands of the form
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3 ) = 1y | ¥-0 lc +e,8(0] Sy < y-g lebe, SR (2.48)

where S(x) is the expression inside the square brackets of equation
(2.42) and ¢, and c, are constants chosen such that the interval has
(1-a)100% confidence. This gives a confidence interval of the form

R (y) = (x| ¥y e J,(x0)} .

The Carrol, Sacks, and Spiegelman (CSS) method is designed to take
cognizance of two sources of error - one from the calibration experinment
itself, and the other from the post-calibration measurement. Data from
the calibration experiment is used to estimate the model (i.e. By, B,
and oﬁ ). One measure of uncertainty is expressed as the probability of
the calibration experiment producing a "good" estimate of ﬂo, ﬂl, and

2
0 - Sheffe (1973) defined a "“good” set by

~

6, = ly| ly-v] < c25és(x)} VxelI and —%f >b .
where I denotes the calibration region or set of x's of interest and b
and c, are chosen such that the probability that the experiment results
in a good outcome is 1-6 i.e.
PLY ¢ Gs] >1 -6 .

The other uncertainty is the probability of "capturing" x, when y,
is observed. Scheffé requires that given & good outcome of the
calibration ezperimeni , the probability of the interval containing X,
is at least 1 - a . As noted by CSS, the drawback with Scheffe's method

is that his own set of tables must be consulted in order to determine c,

and cy -
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The quicker alternative proposed by CSS is to compute ¢, and c, as

follows :
1
¢, = tn-2,1-0/2 and c, = [2f2,n-2,1-617

where t and f are the indicated percentiles of the T and F distributions
respectively.

The difficulty with both the Scheffe method and the CSS
modification is that the confidence level a is conditional and is
therefore not directly comparable with the other (1-a)100% confidence
intervals discussed. A small Monte-Carlo simulation was conducted to
investigate the uncondiiional level of confidence for various choices of
o and 6 (program 1listing may be found in Appendix B). Using the

following parameter values , the results shown in table 3 were obtained

2
By=0.0 ; f,=1.0 ; 0 =0.02

n=100 ; N=2000.

where n is the number of observations generated each time for the
estimation of the model parameters and N is the length of the simulation

run.

2.6.5 THE ORTHOGONAL INTERVAL ESTIMATE.

XL LI A A E U SR e ]

The last estimator to be compared is the orthogonal estimator given

by equation (2.35). This estimator was shown to have superior bias and
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MSE characteristics. It, as well as the others, will now be compared
from the perspective of interval estimation. The criteria used will be
the actual level of significance attained versus the noninal level of
significance employed and the average length of the intervals generated

by each procedure.

Table 3. Unconditional confidence levels for the CSS procedure
for various combinations of o and § obtained from 2000
simulations.

o

6 0.01 0.025 0.05 0.10

0.01 0.0045 0.0080 0.02050 0.0525
0.025 0.0020 0.0125 0.0210 0.0405
0.05 0.0050 0.0065 0.0220 0.0475

0.10 0.0040 0.0120 0.0255 0.0540

Naturally, the most desirable situation is that in which the
probability of coverage is at least as large as the nominal level of
significance and the average interval width is small. Details of another

Monte-Carlo simulation experiment used to examine these aspects of
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interval estimation follow. It should be pointed out that this is not
intended to be an exhaustive investigation, but rather the results

should be viewed as an indicator of possible differences between the

various methods considered.

2.6.6 A MONTE CARLO SIMULATION OF INTERVAL ESTIMATION PROCEDURES.

A Gauss program was written (see Appendix C for listing) to
repeatedly construct interval estimates using each of the five
procedures discussed above and to then determine if the true x, value
being calibrated was covered by the interval. One hundred observations
on both X and Y were generated - those for X being uniformly distributed
over the interval [0,1] and the corresponding Y values obtained from the
regression model Y=08p+B1X+e with the errors generated from N(0,.022). In
this experiment, the values of B, and (B, were fixed at 0.0 and 1.0
respectively. The nominal level of significance used was a = 0.0525
since we know from table 3 that this is attained for the CSS procedure
using 6 = 0.01 and o = 0.10. Thus for the CSS nmethod we used
Fo,98:0.01 = 4.828 and Tgg,0.05 = 1.66051 . For all remaining procedures
the critical t-value employed was Tgg,0.02625 = 1.96278. The results of
5000 simulations are displayed in table 4. Inspection of table 4
indicates that the estimators differ very 1little in terms of both
probability of coverage and average interval length. Theorticaliy, the
probability of coverage should be 0.9475. As can be seen, each of the
five procedures averaged slightly higher than this with the CSS method
having the highest probability of coverage (although this procedure also

had the largest average interval width).
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Table 4. Comparison of 5 methods of interval estimation in
the calibration problem.Comparisons based on probability
of coverage and average interval length from 5000
simulations,each consisting of 100 X,Y data pairs.

METHOD
I 11 II1 IV v

Prob. of

coverage. 0.95520 0.95620 0.95540 0.96300 0.95460

Av. length

of interval 0.079138 0.078945 0.079146 0.083568 0.078855
METHOD I : Classical (I) METHOD II : Inverse
METHOD III : Classical (II) METHOD IV : CSS procedure
METHOD V : Orthogonal
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The shortest average interval width was obtained with the orthogonal
estimator, however the the inverse and classical procedures had average
widths which were within 1% of this. Overall, the conclusion is that in
terms of interval estimation there is very little to distinguish between
the five methods. However based on practical considerations sone
recommendations are possible. As already noted, the difficulty with the
CSS method is that the researcher has no way of knowing what values to
use for 6 and a to achieve an overall prescribed confidence level.
Indeed, many combinations of 6 and a may result in the same overall
confidence 1level. Furthermore, this study has revealed that this
estimation procedure (for this set of prescribed conditions) resulted in
an average interval width which is approximately 6% larger than can be
obtained by other methods. For these reasoms the use of the CSS method
is not recommended. The classical, inverse and orthogonal procedures are
remarkably similar. However in view of earlier findings regarding the
bias and MSE attributes of the orthogonal procedure for point
estimation, this method is rated more highly than any other method
considered in this dissertation.

The results of these and previous analyses are now applied to a
practical problem that was considered by Fox (1987) and which became the
subject of a court case in which the author was called upon to testify

as an expert witness.
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2.7 AN EXAMPLE : CALIBRATION AND THE LAW.

In Australia and other parts of the world, the police sometimes use
aircraft to detect and prosecute speeding drivers. The standard
procedure is for the airborne observer to time the vehicle below as it
crosses two lines painted on the road surface. These lines are usually
separated by either 500m or 1000m. It is then a simple matter to convert
this recorded time into an average speed for the measured distance. The
problem of assessing the accuracy of the procedure and/or varying the
method of calculation falls under the umbrella of statistical
calibration. To this end an experiment was conducted by the Mathematics
and Statistics Department of Curtin University (formally Western
Australian Institute of Technology) in conjunction with the Western
Australian Police Department in late 1986 to help address the accuracy
question. Results from this experiment were to be subsequently used in a
court case in which the validity of the airborne procedure was brought
into question.

The calibration experiment involved a simulation of actual
conditions in which a driver traversed the lines at a variety of speeds
while two independent observers made measurements from an overhead
aircraft. Vehicle speeds over the range 80 km/hr to 140 km/hr were used
with three replications made at each speed. Police vehicles whose
speedometers had been previously checked for accuracy with radar devices
were used in the experiment.

Given two marked lines separated by some distance d meters we can

compute a vehicle's average speed as
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x = 3:6d (2.46)
Y

where X is the recorded speed (km/hr) and Y is the measured time
(seconds) .

This particular problem falls into the category of calibration for
the measurement error model discussed in section 2.4 . A simple check on
the accuracy of the airborne procedure is provided by taking time
measurements on a vehicle whose speed can otherwise be accurately
determined and comparing the actual speed with that calculated using
(2.46). In setting up such an experiment the problenm becomes one of
determining to what extent discrepancies between the calculated speed
from equation (2.46) and the assumed speed are attributable to the two
sources :

(1) error in time readings due to
(a) observer's ability to accurately judge the crossing
of the two lines.

(b) observer's reaction time.

(ii) driver error (a driver told to travel at 80 km/hr say,
will have trouble in maintaining a speedometer reading of

exactly 80 km/hr ).

Thus, whilst the irue time (y) is precisely determined by the {frue
or actual speed (x), in practice the measured time Y is recorded against
the assumed speed (X). Note, that the true vehicle speed X is never

known-the driver is simply instructed to travel at some nominal speed X.
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In terms of the measurement error model we have :
X, = x; +y; and Y, =y; + ey (2.47)
where
X; is some nominal (or assumed) speed .
X; is the actual speed.
uy is a random error reflecting the driver's inability to
maintain constant speed X; .
Y, is the measured time made by the airborne observer.
Y; is the true time that would be required to travel
distance d when travelling at speed x; .
e. is a measurement error associated with recording times.

Furthermore, the assumed model is :

*
Yl = ﬁo + ﬁlxi + ei
where
ﬂo + ﬁlxl =y,
and
x} = — and c = 3.6d. (2.48)

validation of the airborne procedure would imply B, = 0.0 and §,=1.0 .

Another important aspect of this study is determine the relative
magnitudes of ai and ai . Ideally, one would like to be able to 1
establish that aﬁ » az ,for this situation would ascribe most of the

total error in the experiment to the inability of a driver to maintain a {
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prescribed speed under test conditions, thereby giving credence to the

. . 2

accuracy of the airborne observation method. Whilst the comparison of a,
2 . , N .

and A has intrinsic interest of its own it is pointed out that Mandel's

procedure for the measurement error model tacitly assumes knowledge of

2
. 2 . 2
not only the ratio aé/oh but also of p (the correlation between Oy

2 . . . , .
and oh) . By virtue of the replication performed in this particular
calibration experiment, we are able to estimate these gquantities. We

digress briefly to examine how this may be achieved.

2.7.1 ESTIMATION OF THE COVARIANCE STRUCTURE OF THE COMPONENTS OF

ERROR.

Given certain distributional assumptions for the errors u; and e; ,

together with other simplifying approximations, a procedure is developed
. , e e 2 2

for estimating the components of variability gy o, and the

covariance of these quantities. We commence by writing

<
L}

f(Xl) + ei

where f(:) is ,in this case, the reciprocal relationship between a
measured time and measured speed. Using a first-order Taylor

approximation, we may write equation (2.49) as

Y, = £(x;) + uf(x)) + e (2.50)
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In the following development we will assume that u; and e; have the

bivariate normal distribution :

2
1 1 ej ejuj Ui
h(e,,u;) = = exp[—%(—:—z)[—l -2 22 4 —l]] (2.51)
v ZFUéOh(l‘pz)ixr 1-p i Gelu o

Thus :

E[YI] = f(xi)

and

q
"

’ 2 ’ T
Var[Y;] = az + aﬁ[f (x;)1° + 2f (x;)Cov[e;,u;l

2 2 4 2 ‘
a, + oh[f (x;)1° + 2f (xi)paéah (2.52)

2 , . , .
We shall call o; the "effective variance” at point x; . An unbiased

2 92
estimator of o; is provided by S; where

n

S? = ¥ (Eij - Ei)
j=i n-1

= 1

n
where E; = Y Z Eij and Eij is the jth difference in a measured time

1l
and a calculated time for the assumed speed x; . The problem is to

) 2 2 . 2 .
estimate aé ,ah , and p given values of S; at various values of x;. Now,

2
S; has distribution given by the following p.d.f.

n n 2, 2
gis) = B (53 [_1_] ¢ mSi/0; (2.53)
I'(m) o}
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We assume that at each x; , i =1, ... ,t there are n replications.

The likelihood function is therefore given as

t

2 2
L{o;is;) = Kt[ exp(-m E
is1 O

. DO

t - -
) ]111 (sHv L (h™ (2.54)

.=l 1

D

L
n

I'(m)

and the log-likelihood function

where K

e b

t t
nL = t In(k) - m -u Yo+ @1 In(s) (2.55)

i=1 i=l

0 ] e
0
DD

3

2 ) 2
Given sample data {sil, we wish to determine the unknown parameters aé .

p)
a, and p that maximize equation (2.55). Specifically

t

max F(az;aﬁ;p) = 2 (In w,; - s?wi) (2.56)
i=1
vhere
e do
73
and
o} = ab + olE (x)]” + 26" (x;) po o,

subject to
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oz 20
a2 0
-1<p<tl .
Rather than maximizing equation (2.56) we choose to minimize
t
¢(o§;oﬁ;p) = .2 (s?wi - 1n w;) (2.57)

i=1

To this end we use a modified Newton algorithim as described below.
2.7.2 PARAMETER ESTIMATION.
Let ® denote a vector of parameters to be estimated. In this case
g = [az,crz,p]
We wish to find values Q* of ® for which ¢(® is minimized. Starting

with a given point &, ,a sequence of points 8,:8;, ...is generated which

hopefully converges to the point 2* . Let H(&) be the Hessian matrix of
the function ¢(g) and g(§) the gradient vector of ¢(§). Then the ith

iteration of the Newton method is

Gi+r = 8i -H; g (2.58)
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Thus, for the present case we have :
_ QQ2 -
doe
a(d = @2 (2.59)
doy
i)
dp
and
- 02| §2¢ a2¢ -
dot doddal dpdot
2 2 2
H(O) = d ¢ 3‘¢ Q—Q—— (2.60)
doddo:  dod daddp
2’9 ¢ 3¢
dpdot dpdod ap?

Elements of the Hessian matrix are given in Appendix D.

2.7.3 MODEL VALIDATION.

Prior to implementation with actual data, we first investigate the
validity of the foregoing methods by applying them to simulated data
sets for which the population parameters are known in advance. To this
end 30 observations on X and Y were generated from a bivariate normal
distribution with parameters aﬁ = 4.5 ; o_ = 0.85 ; and p = 0.8 at each

e

2 , .
x;. Values of S; were then obtained and the resulting {X ,S } data used

as input to the Newton algorithm (see Appendix E for listing) to obtain
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the estimates Si ' éﬁ , and ; . Results of this procedure are displayed
in table 5. As can be seen from table 5, in most cases the estimates are
in close agreement with the true parameter values although some evidence
of bias is noted. All three parameters have been overestimated by about
half a standard error. This is not totally unexpected since the
expression for a? [equation (2.52)] is only a first-order approximation.
Presumably the degree of bias will be very much dependent on the exact
nature of f£(x) and how well it is represented by a first-order
approximation. It is difficult to draw any specific conclusions on this
matter from the above results. Further experimentation would be required

2 2
to assess the effects of different values of n, ¢ 1Ty and o .

e
Nevertheless, these results indicate that the methodology is sound and
give us no reason to modify the procedure. The method is now applied to

the actual experimental data taken by an airborne observer.

2.7.4 APPLICATION TO AIR SURVEILLANCE METHOD.

Data obtained from the experiment described earlier in this section
is presented in table 6. Using equation (2.48) we may compute a time for
each of the assumed speeds and compare these with those given in table
6. These differences or errors are shown in table 7. It is obvious from
inspection of the data in table 7 that there is evidence of bias in the
time readings. Seventy-three out of the 78 observations were below the
median value of 0.2155 seconds. A simple sign test on such a result
yields a p-value which is zero to four decimal places. It is not

possible to say whether this represents a true underestimation on the
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Table 5. Results from model validation. Tabulated entries

are sample variances obtained from 30 observations
at each x; for each of ten replications. Model

2 2
parameters used were : 0 = 0.85;oﬁ = 4.5;0=0.8.

X5 1 2 3 4 5 6 7 8 9 10
80 0.5461 0.56929 0.6037 0.8226 0.4706 0.5055 0.6529 0.8761 0.6989 1.0000
85 0.4858 0.6304 0.5041 0.4007 0.3215 0.4147 0.5715 0.3697 0.5373 0.4928
90 0.3493 0.2560 0.2490 0.3329 0.5716 0.4900 0.3387 0.4530 0.3341 0.3091
95 0.3697 0.408: 0.2323 0.4083 0.2683 0.2694 0.3047 0.2070 0.2683 0.4045
100 0.2830 0.2266 0.2172 0.2440 0.2852 0.2480 0.2948 0.4020 0.3709 0.3493
1U5 0.2421 0.1989 0.3493 0.2756 0.2323 0.3564 0.3564 0.2256 0.2381 0.2052
110 0.2381 0.3238 0.3364 0.1978 0.1529 0.2352 0.3260 0.1936 0.1980 0.1823
115 0.1892 0.2025 0.4135 0.3434 0.2200 0.1197 0.3215 0.2905 0.2905 0.1624
120 0.1849 0.2381 0.1706 0.2809 0.2052 0.2228 0.2070 0.1260 0.2381 0.1568
125 0.3552 0.3318 0.2275 0.1747 0.3648 0.1616 0.3226 0.3376 0.2611 0.3215
130 0.3612 0.2735 0.3058 0.2500 0.2652 0.3894 0.4007 0.1584 0.3376 0.3306
135 0.4251 0.4775 0.2981 0.3069 0.1900 0.3919 0.2862 0.3215 0.3758 0.1498
140 0.2798 0.2852 0.2798 0.2884 0.4409 0.2632 0.4147 0.3283 0.4529 0.2981
;v 0.9248 0.9772 0.7460 0.8123 0.8543 0.8230 0.8946 0.8763 1.0229 0.9224
;u 5.0064 5.3932 3.7315 4.6493 4.6475 4.5126 4.6761 5.1612 5.6528 6.7595
p 0.8423 0.8624 0

.7190 0.7934 0.8232 0.8020 0.7963 0.8384 0.8743 0.8707

Mean S.D.

0.8854 0.0817
4.9190 0.6071
0.8222 0.0470
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Table 6. Data obtained from air surveillance experiment.
Tabulated entries are measured times (secs) made
by an observer in overhead aircraft for vehicle
below to travel 500m.

COLUMNS: Speed (km/hr)
80 85 90 95 100 105 110

21.960 21.020 19.520 18.610 17.780 16.930 16.1
21.960 21.040 19.710 18.590 17.710 16.820 16.0
22.210 20.810 19.750 18.660 17.740 17.000 15.9
22.040 20.980 19.460 18.640 17.800 16.870 16.1
21.950 20.980 19.620 18.540 17.670 16.840 16.0
22.160 20.890 19.750 18.690 17.650 16.960 16.0

115 120 125 130 135 140

15.430 14.710 14.000 13.600 13.170 12.590
15.200 14.680 14.150 13.570 13.120 12.560
15.360 14.680 14.350 13.450 13.020 12.630
15.410 14.640 14.010 13.570 13.130 12.520
15.280 14.640 14.070 13.570 13.120 12.590
15.430 14.690 14.230 13.530 13.120 12.670

CELIL; CONTENTS --
M-time:DATA




Fox, D.R.

Statistical Calibration: Theory and Applications

Table 7. Differences in

computed

using

COLUMNS: Speed (km/hr)

80 85

-0.54000 0.08977 -0.
-0.54000 0.10977 -0.
-0.29000 -0.36647 -0.
-0.46000 0.04977 -0.
-0.55000 0.04977 -0.
-0.34000 -0.28647 -0.

115 120

-0.22217 -0.16603 -0.
-0.45217 -0.19603 -0.
-0.15724 -0.19603 -0.
-0.24217 -0.23603 -0.
-0.37217 -0.23603 -0.
-0.08724 -0.18603 -0.

CELL CONTENTS --
Error:DATA

90

48000
29000
03022
54000
38000
03022

125

28571
13571
05000
27571
21571
17000

PhD Dissertation

measured time from table 6 and time
equation (2.48) at each speed Xx;.

95

-0.33737
-0.357317
-0.28737
-0.30737
-0.40737
-0.06000

130

-0.24615
-0.27615
-0.39615
-0.27615
-0.27615
~-0.31615

100

-0.04178
-0.11178
-0.26000
-0.02178
-0.15178
-0.35000

135

-0.16333
-0.21333
-0.21529
-0.20333
-0.21333
-0.11529

105

-0.05113
-0.16113

0.01887
-0.11113
~0.14113
-0.18286

140

-0.17596
-0.20596
-0.13596
-0.24596
-0.17596
-0.09596

110

-0.18364
-0.34364
-0.22622
-0.24364
-0.32364
-0.13622

16
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part of the airborne observer or is a consequence of the driver always
travelling slightly slower than required. The normality assumption for
the error distribution is well supported by the histogram and boxplot of
figures 8(a) and 8(b). The Q-Q plot of figure 8(c) is strongly linear
with a correlation coefficient of 0.995 which is not small enough to
warrant rejection of the hypothesis of normality (p > 0.95).

A summary of the sample variances computed at each (assumed) speed
is provided in table 8. Application of the iterative Newton-Raphson
procedure converged at the point éﬁ = 0.0072 ; Si = 11,3250 ; ; = 0.8981
. These results suggest that the variability (as measured by one
standard deviation) in maintaining constant vehicle speed is about 1
kn/hr , the variability associated with making time measurements is of
the order of 1/10 th. of a second and that the two errors are strongly
and positively corrrelated. These results are not surprising and agree
with what one would intuitively expect. With these estimates we are in a
position to calibrate using the various procedures discussed in this
chapter.

For the purposes of calibration we let Y; be a measured time for
assumed speed X; and X? is a computed time using equation (2.48). The Y,
are regressed on X? for the classical method, the orthogonal method, and
Mandel's procedure. For the inverse method, and Fuller's method the XT
are regressed on the Y,. The results are presented in table 9. The
parameter estimates for each of the five calibration methods considered
are very similar which is accounted for by the regression line having a

slope very nearly equal to unity and and intercept which is close to the

origin.
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Table 8. Summary of data obtained from the air surveillance

experiment. Tabulated entries are sample error

variances of timing measurements at each speed x;.

Assumed Speed X;

Sample variance

85

90

95
100
105
110
115
120
125
130
135
140

0.0441126
0.0483296
0.0216649
0.0162971
0.0057608
0.0063680
0.0183088
0.0007868
0.0080210
0.0028164
0.0016314
0.0027468
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Figure 8(a). Histogram of timing errors for
the air surveillance method.
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Figure 8(b). Boxplot of timing errors.
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Figure 8(c). Q-Q plot of timing errors.

Table 9. Estimated parameters for five different calibration
methods using the air surveillance data of table 6.

Method slope intercept
Classical 0.9901 -0.0572
Inverse 1.0077 0.0964
Orthogonal 0.9912 -0.0761
Mandel 0.9926 -0.0992
Fuller 1.0081 0.0891
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Using each of the estimated models in table 9 we can obtain
calibrated measurements for vehicle speed. This has been done for a
range of measured speeds between 80 km/br and 160 km/hr {approximately

50 m.p.h. to 100 m.p.h.) and results given in table 10 below.

Table 10. Calibrated speeds using each of the models from
table 9.

Calibrated Speed
Heasured Class. Inverse Orthogl Mandel Fuller

Speed(km/hr)

80 79.007 79.053 79.029 79.059 - 79.047
85 83.932 83.971 83.950 83.978 83.967
90 88.855 88.887 88.870 88.893 88.884
95 93.776 93.800 93.7817 93.806 93.799
100 98.696 98.711 98.703 98.716 98.712
105 103.615 103.619 103.616 103.623  103.622
110 108.532 108.525 108.527 108.528 108.530
115 113.447 113.428 113.436 113.430 113.435
120 118.361 118.328 118.344 118.329 118.339
125 123.273 123.226 123.249 123.226  123.239
130 128.183 128.121  128.152 128.120 128.138
135 133.093 133.014 133.053 133.011 133.033
140 138.000 137.904 137.951 137.900  137.927
145 142.906  142.792 142.848 142.786  142.818
150 147.810 147.677 147.743 147.669  147.707
155 152.713 152.559 152.636 152.550 152.593
160 157.615 157.439 157.526 157.428 157.471

The results in table 10 show little variation among the calibration
methods. This is primarily due to the very high degree of agreement
between the measured times and the computed times coupled with a

gradient of almost 1.0 and an intercept of approximately zero.
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The entries in table 10 should be interpreted as follows : suppose
a reading of 22.50 seconds was made for a 500m distance. Ordinarily, we
would compute the average speed as 80 km/hr and this becomes our
measured speed. However reference to table 10 suggests that the {rue
speed is more like 79 km/hr (recall that the timing measurements
consistently underestimated the true value by an average of about 1/5
th. of a second and thus overestimated the actual speed). Of course the
differences here a quite small and for practical purposes
inconsequential, although it is perhaps disconcerting to the driver that

the bias is not working in his or her favour.






