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This dissertation provides a comprehensive treatment of statistical

calibration theory and methodology. In addition to the adaptation and

refinement of existing theory, a number of new results are reported.

These include

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

development of orthogonal estimation procedures in both
the univariate and multivariate situatioms.

calibration procedures for measurement-error models and
methods for extracting variance components when
measurement-error variance is confounded with
residual-error variance.

development of the theory associated with conditional
multivariate calibration

derivation of procedures for calibrating in the
univariate, multiple-regression model.

derivation of a new measure of influence for conditional
calibration procedures.

development of a procedure for discrete calibration - for
example, in experimental design situations where a
dummy-variable coding of the X-matrix is used.
development of theory and methods for calibrating in a

non-stationary field where the model parameters are
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functions of the position in a multi-dimensional
space-time framework.

Chapter I provides a review of existing literature in the areas of
univariate and multivariate calibration, tracing briefly the development
of «calibration as a statistical technique and the controversy
surrounding the so-called "inverse" and "classical” apprdaches.

Chapter II deals with univariate calibration problems and examines
the role of standard estimation procedures in addition to introducing
alternative forms of estimation. Both point and iﬂterval estimation
procedures are examined. Questions of optimal design in
controlled-calibration experiments are also addressed. Results of
small-scale simulation studies are presented which indicate the relative
utility of the methods considered. The performance of the various
procedures is also studied for measurement-error models and some
recommendations provided. Many aspects of univariate calibration are
succinctly illustrated with the use of a detailed application arising
from legal proceedings brought against a speeding driver.

Chapter III expands upon the ideas introduced in Chapter II and
considers multivariate applications of calibration. The multivariate
analogs for inverse and classical estimation are developed as are
confidence interval procedures. The orthogonal estimator introduced in
Chapter II is extended to cater for multivariate problems and computer

software developed to perform the iterative calculations necessary to
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implement this means of calibration in practice. A significant portion
of this chapter is devoted to the development of the necessary theory
for conditional multivariate calibration. New procedures are developed
which enhance the performance of calibration when one can utilize
knowledge of some of the components of the vector being calibrated for.
These methods are also applied with great effectiveness to the
univariate multiple linear regression situation.

In Chapter IV methods are developed for spatial calibration where
the usual assumptions of independence do not hold and the parameters of
the model are linearly related to the position within a random field.
Various procedures for estimation in this varying-parameters model are
devised together with the development of accompanying computer routines.

Chapter V concludes the dissertation with suggestions for future

research.
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Sticky Note
POSTSCRIPT 2009
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CHAPTER 1

REVIEW OF LITERATURE

1.1 INTRODUCTION

The history of statistical calibration is long and checkered. One
of the earliest calibration examples was provided by Wolf (1908). An
examination of the literature suggests little interest in the problem
until the late 1930's and early 1940's with the publication of papers by
Eisenhart (1939) and Fieller (1940). There was another gap in the
literature from the 1940's to the late 1960's when Krutchkoff (1967)
provided results of a simulation study which brought into question
standard statistical practice in calibration problems. Interest in the
calibration controversy was intense for a few years thereafter but again
waned and went into recession. Only recently has there been a renewed
interest in the subject, which one may speculate is partly due to the
associated developments in regression theory, for example, detection of
influential observations and outliers,and multivariate regression.

Whilst much work has already been completed, more needs to be done
to increase the body of theory on this important statistical problem. It
is true to say that the calibration problem in its infancy was a
difficult child that demanded the careful attention of the best
statisticians. Thankfully, today the so-called calibration controversy

has been largely resolved and attention is now correctly being given to
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more diverse applications as well as refining existing theory. This
present chapter is intended to provide a concise review of the major

developments that have taken place over the last fifty years.

1.2 CALIBRATION DEFINED

The most common form of calibration is that of calibrating a quick
and easy (and usually inexpensive) method of obtaining measurements
against a tedious and/or expensive, but highly accurate method. In
calibrating some instrument we take readings Y on some physical process
X and use the empirical relationship between Y and X to 'predict’' the
value of X given some future reading y,. Examples of such procedures
abound in the literature. Carroll et. al. (1981) consider the
calibration of a mass spctrometer while Knafl et. al. (1984) have used
calibration as part of the nuclear safeguards program. A more novel, but
nonetheless serious application of calibration theory was recently
provided by Smith and Corbett (1987) who looked at the determination of
the length of an olympic marathon course based on the counter readings
taken from a bicycle wheel.

Williams (1969) has stressed the existence of two types of
calibration problem. "Absolute calibration" is used in reference to the
situation just described in which an alternative procedure for obtaining
measurements is calibrated against a known or ‘'true' method.
"Comparative calibration" on the other hand is used to describe the
process of comparing one instrument or neasurement technique against

another. Rosenblatt and Spiegelman (1981) define the following
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3
categories for the variety of possible uses of calibration.
(1) single use : where a point or interval estimate is required
for a single future reading.
(ii) multiple uses : when the process being calibrated can be

assumed to be sufficiently stable to permit the repeated
use of the calibration model.

(iii) single and multiple use in combination with other
measurements : when results from the calibration experiment
are to be used with other data to estimate a quantity that
is expressed as a function of several variables.

Aitchison and Dunsmore (1975) distinguish between designed and natural
calibration experiments. By their definition a designed experiment is
one which is set up under controlled (labatory) conditions and 1is
intended to span the range of expected X, values. A natural calibration
experiment on the other hand, is one in which the data simply 'presents’
itself as is often the case in biological or clinical research where
experimentation is not possible. Rosenblatt and Spiegelman (1981) also
report on an increasing requirement and use of non-linear calibration
which the authors claim is often brought about by the non-linearities

introduced by automated recording procedures.

1.3 THE CLASSICAL VERSUS INVERSE CONTROVERSY

In many instances it is assumed that the relationship between Y and

X is linear, and thus estimation of parameters B, and B, in the (simple)

regression of Y on X is readily achieved via OLS to give :
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§1 = ,éo + lei (1.1)

In contrast to the 'normal' use of equation (1.1) where some new
value of Y is to be predicted for a given value of X=x,, the requirement
here is to estimate x, having observed Y=y,. This in turn has led to the
development of two distinct approaches, hereafter referred to the
classical and inverse regression methods.

In the so-called "classical" calibration method an estimate of X,
io , is obtained by a simple rearrangement of the terms in equation

(1.1) to give :

~

- Yo — éo 1.2)
%, = = 1.2
0 '61
An alternative, and equally appealing approach is to treat X as
dependent and regress X on Y. This procedure is known as the "inverse"
calibration method for which we obtain v, and &l as our parameter

estimates in the regression
= %% * ¥ t ¢ (1.3)

The problem of deciding between these two methods is not new.
Eisenhart (1939) suggests that both methods were in common use up to the
time of his paper, although firmly rejects procedures based on equation
(1.3) arguing that the least-squares line should be fitted to the

variable which is observed with error (the case of errors in both
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variables complicates this assertion and is examined in Chapter two).

Krutchkoff (1967,1969) on the other hand advocates the use of
inverse calibration and presents the results of simulation studies in
which the relative merits of each method were asessed.

A number of papers critical of Krutchkoff's work have since
appeared, although general agreement on the 'best' approach has not been
forthcoming. The problem, it seems, stems from the fact that there is no
universally accepted properties of an optimal estimator in the
calibration experiment.

Williams (1969) pointed out that in the case of normally
distributed errors, the classical estimator has an undefined expectation
and infinite variance and as such any comparison based on mean squared
error (MSE) is rendered meaningless.

Berkson (1969) advocates the concept of Pitman closeness as a means
of comparison although notes that estimators obtained by the inverse
method are not consistent nor asymptotically unbiased. This lack of
consistency was also observed by Madansky (1959). sShukla (1972) showed

that the asymptotic MSE for the inverse estimator is given by

a 4 — 92
lim HSE(X:) = ol (x - %4)
n~w Bisl 6
o2 ~x )
where 6 = 1 + ” and X, denotes the calibrated value from the
Bys
XX

inverse regression. Oman (1985) showed that the exact MSE for the

inverse estimator is given as
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MSE[R3] = 6 1142 [(@-6)g(n-1, 1)~ (n-4)$(a-3, N1} +

S
(1%)_“_ [ (n-2) #(n-1, A) - (n-4) $(n-3, )]
2

V)
ﬁlsxx

a2

where Sxx represents the usual sum of squares, X = , 6= (xy - X)

, and ¢(j,A)= E[E%EWJ ,j>0  and W has a Poisson(g) distribution.
Martinelle (1970) shows that the MSE for the inverse estimator is

less than that of the classical estimator provided

— ——

(XO = X) ¢ SXX[Z + 72sxx

where X and Si are the sample mean and (biased) sample variance
respectively and vy = gl. Furthermore, Matrinelle (1970) suggests that
when 72sxx is large, then there is little advantage in using the inverse

method. The general relation between MSE for the inverse and classical

estimators is depicted in figure 1.
1.4 INTERVAL ESTIMATION

Having obtained a point estimate for X, whether it be by classical
or inverse regression, a natural extension is to develop interval
estimates. Many authors have devoted their attention to this problen.
Probably one of the earliest references to interval estimation in the
calibration context was by Fieller (1940,1954) who constructed a
(1-0)100% confidence interval for X,. However the procedure had inherent
difficulties, most notably that the (1-a) confidence region sometimes
included the whole real line or two disjoint semi-infinite lines. This

phenomenon occurred when ﬂl was close to zero (in which case one may
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MSE

Inverse

Classical

> Xo

Figure 1. Comparison of mean square error for the inverse
and classical estimators.
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argue that there is 1little value in conducting the calibration
experiment at all). Dobrigal, Fraser, and Gebotys (1987) provide a
conditional confidence interval for X, which avoids the paradox of
Fieller's method although the level of confidence is only approximate.
Sheffe (1973) provided confidence bands for the classical estimator
although his method required the use of his own set of tables for
determining the values of certain coefficients. Carrol, Sacks, and
Spiegleman (1988) modified Sheffe's approach so as to be easier to
implement in practice. The resulting intervals were also shown to be
substantially shorter than the corresponding Sheffe interval. Oden
(1973) has considered the problem of finding simultaneous confidence
intervals for the inverse estimator. Further aspects of interval

estimation techniques are taken up in chapter two.

1.5 OTHER DEVELOPMENTS

Many alternatives to the classical and inverse estimators have been
proposed, each being designed to overcome certain inherent difficulties
associated with the standard procedures. Conditioning, compound
estimation, and Bayesian methods usually form the basis of these
approaches. In this section we examine some of these alternatives.

Lwin and Maritz (1980) proposed ‘the "non-linear" predictor of X,
which was shown to have desirable properties not shared by other
methods. In a subsequent development Lwin and Maritz (1982) considered a

more general class of estimators and in particular demonstrated that
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x*(yy) = (1 + 825, ) 'K+ 6%, (1 + 6%, [(y-By)/B,]

is optimal in the sense that it results in smallest MSE when applied to
previous y;'s. This estimator makes use of the current observation y as
well as previous x; values of the calibration experiment.

Ali and Singh (1981) proposed an estimator which was a weighted
average of the inverse and classical estimators while Srivastava and
Singh (1987) provide a class of estimators by replacing ﬂ;l in the

classical estimator with

~

T(k) = :———gl———— : k>0 and o2 is the residual
ﬂf + ko?/n

error variance. The p.d.f. for the resulting class is obtained and the
bias and MSE obtained by numerical integration. The authors conduct
simulations to establish that the inverse estimator was superior in
terms of MSE thus supporting Krutchkoff's (1967) conclusion.

Techniques based on conditioning have been widely used in order to
obtain estimators which are well-behaved. Problems usually arise when ﬂl
is close to zero and so many authors prefer to 'protect' themselves from
this situation by first testing the hypothesis Ho:ﬂ1=°~ This is anlagous
to Fisher's protected LSD in an analysis of variance. Graybill (1976)
advocates this method as standard procedure. Shukla and Datta (1985)
also use this form of conditioning to investigate properties of the
classical estimator under "random truncation about zero". Their

suggestion is that a level of significance of at least 0.01 be used. The

B

authors then found that the bias and MSE depend only on the ratio o .
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Specifically, |bias| decreases for increasing ;ﬂ for both the inverse
and classical estimators although |bias| for the classical estimator is
always smaller than that of the inverse estimator. Furthermore, for
small ﬁl the MSE for the classical estimator is greater than the MSE for
the inverse estimator for interpolation but is smaller for
extrapolation. There is little difference between the two (in terms of
MSE )for large ﬁl. Lwin (1981) also advocates the use of conditioning
although prefers to be more specific, claiming that the hypothesis to be
first tested should be Ho:ﬂl>0 since the condition of ﬁ1<0 has no
validity in a calibration context. He suggests a class of estimators
linear in the current stage data mean y : ﬁo(f) = ko + k‘f and uses
the criterion n-l{E[ﬁo(yi) - xi]2l , called the compound MSE as a basis
of comparison. It is shown that the unconditional minimization of the
compound MSE leads to the inverse estimator whereas if the constraint of
unbiasedness is imposed, the minimization results in the classical
estimator. Shukla (1972) investigated the classical estimator for this
conditioning situation in the case of normally distributed errors and
obtained expressions [to O(n_l)] for both the inverse and classical
estimators. Lwin (1981) generalized these results by considering a wider
class of error distributions also to terms O(n_l) and concludes that
there is negligible effect of non-normality on the performance of the
classical estimator. Furthermore, the bias of the inverse estimator is
affected by both the skewness and kurtosis of the error distribution
although this effect can be reduced by increasing n. Lwin (1981)
suggests that in general an excessively peaked error distribution will

reduce the efficiency of the inverse estimator, while a flat-peaked
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error distribution will enhance its performance.

Bayesian approaches have also been applied to the calibration
problem although the techniques are perhaps not as widespread as those
based on more traditional frequentist methods. Hunter and Lamboy (1981)
provided a Bayesian analysis of the calibration problem. Interestingly,
their approach resulted in a posterior distribution for the calibrated
value that also has infinite variance. The authors remark that this fact

is not disturbing and go on to state :

"Theoretically, if one's model is adequate, all of
the relevant information is contained in the
appropriate posterior distribution, whether its
variance happens to be finite or not . . . our view
is that for standard calibration problens,
arguments about which estimator is best that are
based on MSE or related criteria are simply
irrelevant”.

It should be pointed out that the duality of the classical and inverse
regression methods is not resolved by a Bayesian approach since either
is supported depending on the choice of the prior distribution for X, .
Much work has also been devoted to other aspects of the calibration
problem including extensions to the multivariate setting. Spiegelman
(1984) has explored the use of calibration curves in quality-control
situations while Brown (1982), Wood (1982), Spezzaferri (1985), Oman and
Wax (1984) and others have examined the use of multivariate calibration
techniques. Oman (1984) has derived a statistic, similar in nature to
Cook's distance to measure the influence of a particular observation on
future estimates from the calibration curve. Spiegelman (1984) has

similarly considered the role of regression diagnostics in the
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calibration problem.

While much discussion continues on the relative merits of the
inverse and classical approaches, a further complexity is introduced
when one considers situations in which both X and Y are measured with
error. Berkson (1950) formally raised the question of the existence of
two separate regression lines in such cases. Small-sample properties of
Bl were investigated by Halperin and Gurian (1971) and under certain
prescribed conditions, results for [[Bl] and MSE[&,] were derived.
Clutton-Brock (1967) argues that there is "no paradox of two regression
lines” and suggests that in the case of errors in both X and Y, the
maximum likelihood estimates lie between the two separate regressions of
Y on X and X on Y. Carrol and Spiegelman (1986) have examined the effect
on confidence interval estimates of X, when measurement error is
ignored. They showed that the ratio of (interval length ignoring
measurement error) : (interval length when no measurement error present)
is equal to (1 + ﬁ?ailaz)% where oﬁ is the variance of measurenent
error. Thus, for example when ﬂl is close to 1.0, the effect of
neglecting a measurement error variance which is comparable to the
residual variance will ‘cause the resulting interval estimate to be
approximately 40% too large. The neasurement error model will be

exanined further in chapter two.






