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SUMMARY

An alternative to the inverse and classical methods of calibration is proposed. In
the classical approach the calibration data are projected vertically onto the
regression line; for the inverse method the projection is horizontal. We examine a
compromise, or hybrid approach where the data are projected ’orthogonally’ onto
the regression line. The parameter estimates so obtained are shown to correspond
to the spectral decomposition of the sample covariance matrix of the calibration
data. Furthermore, prediction intervals for a calibrated response can be obtained
using Fieller’'s theorem. The methods are illustrated using recently published
calibration data.
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1. Introduction

The problem of linear calibration has received a good deal of attention over
the years [Berkson (1969), Kruthkoff (1967,1969), Williams (1969), Lwin and Maritz
(1982)] and even after protracted debate over the relative merits of -classical
versus inverse regression, articles continue appear in relation to this issue [eg.
Chow and Shao (1990)].

Much of the early discussion centered on the appropriateness of the different
criteria for judging competing estimators (eg. mean square error versus Pitman
closeness) and ‘to an exfcnt, the issue remains unresolved. While the “classical"
versus  “inverse" controversy has subsided, the issue still has important
ramifications for for the practitioner. Frequently in my role as consulting
statistician I am asked by researchers "should I regress x on y or y on x?" It was
Berkson (1950) who formally raised the question of "Are there two regressions"
forty years ago, and, for the researcher faced with a practical calibration
problem, the question is as valid today as it was then. In their recent article,
Chow and Shao (1990) indicate the importance of satisfactorily addressing this :
issue in pharmaceutical testing.
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As an example they cite a hypothetical situation in which two companies produce
the same drug. Different assessments of assay results may arise not because of
inherent product differences but due to the different calibration procedures
employed. In tackling this conflict, the authors examined the probability that the
ratio of the inverse to classical estimates is within certain prescribed bounds,
arguing that if it is then the two methods are “interchangeable”. Where a
significant difference between the two estimates is observed, the suggestion is
that "both companies should use the better method". In making such a
recommendation, the authors have done nothing to clarify the situation for we are
naturally led to ask what constitutes better or best? It would make more sense to
remove the ambiguity in the first place thus avoid being confronted with the
dilemma.

In this paper we propose an alternative to the classical and inverse
estimation procedures which, in a sense, may be thought of as a compromise between
the existing methodologies. Rather than project the calibration data vertically
onto the regression line as is done in the classical approach, or horizontally as
in the inverse method, we project the data ’orthogonally’ as depicted in figure 1
below. The least squares criterion is then applied to the distances, di.

X

Figure 1. A typical data point (x;y;) and its orthogonal projection (xi’,y;)



A more general situation corresponding to an arbitrary angle, 0 of
projection, is depicted in figure 2
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Figure 2. A typical centered data point (x?,y?) and its projection (xf ,yf ).

Some clarification of the use of the word orthogonal is necessary since the
same términology is often used in reference to ordinary least squares (OLS). The
orthogonality referred to here is in reference to the angle 7y in figure 2,In OLS
the term is used in connection with the orthogonality of the error vector (y - 9)
and the column space spanned by the predictor variables.

One further point to note about the orthogonal projection is that the method
takes cognisance of errors in both the x and y data. Fuller (1987) briefly
mentions the calibration problem in his comprehensive treatment of measurement
error models, although the methods described assume that the magnitudes of the
errors in X and Y are known. It is acknowledged that it would be desirable to
allow the angle of projection to be dictated by the ratio of these error
variances, however for most practical situations this quantity is unknown.

2.  The Geometry of Orthogonal Projections

In the following development we assume that X and Y have a bivariate
distribution with finite first and second moments. Furthermore X and Y refer to
the centred variables (X - ny) and (Y - py) respectively. Our regression model is
thus



Y'= B X
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Consider a typical data point (x*,y) Figure 2 shows the point (x ,y) its
projection (x ,y ) onto the regression line, and the various angles mvolved 0
is the angle of projection, 7y is the angle the regression line makes with the
line segment joining (x’i“ ,y*i‘) and (x’i",y’i*’) and ¢ is the angle the regression line
makes with the Y  axis. Using elementary mensuration and trigonometric
relationships we have

1 + B,tan(0)

= 2
tan(y) B an®) (2.2)
a1
and ¢ = tan B_ 2.3)
1

Furthermore, the projection equations are given as

£ y? + x?cot(@)

X = m (2.4a)
o Biy; + x;Bicot(®) (2.4b)

B, + cot(®)

The projection matrix # corresponding to equations (2.4a) and (2.4b) is thus

I {CO‘“’) 1] 2.5)
1 + cot(®) |Bjcot(®) B,

T T T
For an orthogonal projection we have y = 3 and 6 = 5" ¢ thus tan(0) = tan(5 - )

= cot(¢). Using equation (2.3) we therefore have that tan(f) = Bl . Substituting
into equation (2.5) we obtain the matrix for an orthogonal projection :



(2.6)
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3. Least-Squares Estimation
For any given value of 6 we wish to estimate [31 such that the following
quantity is minimized

2 * 2

1 yj ) le: le’: - Y
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n :
= de (3.1)
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Differentiating (3.1) with respect to B1’ equating to zero and solving gives
the least-squares estimate : ‘

n n
sin(6) z y?z + cos(0) Z Xy
A _ 1:]_ 1=1
Bl - n n (32)
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Observe that when 8 = 0 equation (3.2) reduces to
n
Y Xy
A i=1 '
B, = i ! (3.3)
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which is the OLS estimate.

4. Relationship with the spectral decomposition of the covariance matrix
Let € denote the sample covariance matrix :

B Sxx Sxy
Sxy Syy
Furthermore, let ¢ = [el,ez]T be an eigenvector of € and hence e = Ae where
A is the corresponding eigenvalue. Now Ae = [Xcl,kez]T and the gradient of the
~ Ae, e
line from the origin to the point (Ae ,Ae)) is equal to B = 2=
"2 17 e, i
But,
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Equating coefficients in equations (3.2) and (4.1) we see that
e, = sin(@) and e = cos(6), that is \ R

~L

_ |cos(6) e
== |sin(e)

However, in the previous section it was shown that for an orthogonal

projection [~51= tan(0). We are therefore led to conclude that one of the
eigenvectors of & corresponds to a least-squares fit when the data are projected
orthogonally onto the regression line. The other ecigenvector is a line at right
angles to the first and will not make physical sense in the calibration problem.



As an alternative to performing a spectral decomposition of € in order to

determine Bl we can obtain an expression in terms of familiar sums of squares by
dividing equation (3.2) through by cos(6) and noting that for an orthogonal
projection Bl = tan(0). The resulting equation is a quadratic in Bl which has
solutions

2 2 2
(Syy - Sxx) £ (SYY - Sxx] + 4Sxy

B, = e 4.2)

Once again, only one of the roots of equation (4.2) will make sense in the
context of the problem.

5. Interval estimation for orthogonally-calibrated data

To construct prediction intervals for some calibrated X, corresponding to a
given value of Y = y, we make use of a procedure due to Fox (1991) and asymptotic
distributional results for the eigenvectors of €. Our estimated calibration model

/\ -~ ~ -~
is Y= BO+ ﬁiXi where Bl is the orthogonal estimate for the regression slope and

By is estimated in the usual way, that is BO = y- Bli . In matrix notation

A
Y=X

oo

5.1

~ -~

where the elements of B are BO and Bl. For a new observation Y, the classical

estimator of X is (Y, - Bo)/BF )/C\IO . Fox (1991) showed how Fieller’s theorem
[Fieller (1944)] may be utilized to provide a (1-a)100% prediction interval for
Xo- The method is now briefly described.

First, we define a new quantity E* as the vector obtained by inserting Y, in the

first row position of B. That is:
E*T = [Yo I ET} (5.2)

B* is similarly defined by replacing B in equation (5.2) with E
Under the assumption that Y, is a random variable from the same population as the
original calibration data, we have:



V=Cov[B] = (53)
1 I 0

= Ge 1 (5.4)
0" ] (XTX)

where 0 is a (1 x 2) vector of zeros.

The classical estimator can be written as the ratio of linear combinations of

the elements of B . Specifically,

A KTE*
LB
where K'=[1 -1 0]
and L'=[0 0 1].
Following Zerbe (1978), we define quantities A, B, and C as follows:
A=LB) -t L'VL 56
=@LB) -t 4 (5.6)
2 T ke
B = Z[tv, o K VL - K'B)LB )] (5.7)
c=®B) -t  KVK | 5.8
= K'B) - ¢, 4, (5.8)

2
where ty o is the (I - a2)100 percentile of the T-distribution having v degrees

of freedom. Let ab, and ¢ be the observed values of the corresponding random

2
variables. Then provided a > 0 and b - 4ac > 0, the limits of the (1 - ©)100%
prediction interval for X, are:



2
] .Ib 4
b ac (5.9)
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When f, is estimated via OLS, then X (=Cov[B]) in equation (5.3) is Ge(X X)
and the application of equations (5.5) through (5.9) is straightforward. For the

orthogonal estimation of f;, we require Cov[B] before the preceding method of
interval estimation can be used. We now derive a first-order approximation to

COV[E].

5.1 A first-order approximation for Cov[_B_].
The following theorem is due to Anderson (1963) and appears as theorem 8.3.3.
in Mardia et.al. (1979):

Theorem Let X be a positive definite matrix with distinct eigenvalues. Let
M ~ W (£,m) and set U = m'M. Consider the spectral decompositions
% = TAT" and U = GLG". Then as m —> oo , g, ~ N,(¥,W/m), where

A
] T

7 Tolo

AR ) -
jzi-(xj - ki)

1

In otherwords, the eigenvectors of U are asymptotically normally
distributed, unbiased and have the stated asymptotic covariance matrix W/m.

- 8 - Y
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Let ¢ = e, | T = ; e = .

with (5.10)

Yii \I’12-
Vo1 Vo

the elements of W are computed using the previously stated theorem (ie. ¥ is
either W, or W, of the theorem, depending on whether e is the first or second

where Y = Covie] = and 0 is a (1 x 2) vector of zeros and

eigenvector of €). The independence between Y and e implied by equation (5.10)
is readily appreciated when one considers that the variance-covariance matrix ©

(and hence e) is unaffected by changes in location.

Furthermore, let E[T] = © = [61,62,63]T

0,
and g©@) =1 o,
92
1 0 0
Therefore G =V[@)] = 0 8 1
0 9

Now, COV[E] = [1 X
0 1

T
and Cov[ ¢ ] = G Cov[T] G |
[Rao (1973),p388].
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Substituting observed values for parameters 6, and 6; we have:

_ 1 | = ~
‘”—=—2[ﬁ1 w11-261w12+w22]

Finally,

2 2 —

We now have all the necessary components for obtaining prediction intervals
A
for an orthogonally-calibrated estimate Xoerhogy  COTTesponding  to  a  new

observation Y = y,. The procedure is summarized below:

1. Form the sample covariance matrix € as given in section 4.

2. Obtain the spectral decomposition of & and note the principle

. T
eigenvector, e = [e,e,] .

3. Compute the orthogonal regression estimates:

Blzé_l and Bozy‘ﬁli



~ T

and let B = [BO,BI].
4. Augment [3_ to form E as indicated in equation (5.2).

5. The orthogonally-calibrated estimate ()A(O(onhog)) corresponding to y, 1is

obtained by computing equation (5.5) using E

6. Obtain matrix M using equation (5.11) and substitute this for X in
equation (5.3) to obtain matrix V.

7. Use equations (5.6), (5.7), and (5.8) to compute the sample values a,b,c
of A,B, and C for some prescribed level c.

8. The limits of the (I - o)100% prediction interval for Xo(orthog) 1€
obtained using equation (5.9).

The procedure is not as complex as the steps above may indicate. The matrix
calculations involve matrices of order no greater than (3 x 3). The spectral
decomposition of € is readily achieved using intrinsic functions in matrix-
based computer programs such as GAUSS or MATLAB. We now illustrate the
procedure by applying it to two recently published calibration problems.

6. Examples

6.1 Pharmaceutical Testing _

This first example was used by Chow and Shao (1990) to illustrate the
differences between the classical and inverse methods of calibration in a
pharmaceutical testing problem. The data consisted of absorbance measurements
obtained for 12 preparations of a standard whose concentration was accurately
determined. On the basis of the estimated calibration line an estimate was
obtained for a new preparation of unknown concentration. The data is
reproduced in the table below.



Concen. X;|Absorbance Y;

17.65 97.485

17.65 95.406

22.06 121.200

22.06 121.968

26.47 142.346

26.47 145464 (

* 90.044 .

26.47 141.835

26.47 135.625

22.06 113.814

22.06 112.890

17.65 89.872

17.65 90.964

The * in the table above corresponds to the unknown preparation.

The sample covariance matrix € is :

€ = 14.144  76.791
~ | 76.791 431.328

The principle eigenvalue and eigenvector of € are:

T
‘A = 445015 e = [0.175459 0.984487]
From which we obtain :

B, = 0984487 _ 5 61003
0.175459

-~

Bo = 117.406 - (5.61093)(22.060) = -6.37126

The orthogonally-calibrated estimate for the unknown concentration whose
absorbance is 90.044 is 17.183. Furthermore,

16.366 0 0
V = 0 49.780 -2.182
0 -2.182  0.099

and for a 95% prediction interval
a = 30.991 ; b = -1060.286; ¢ = 8967.479



Using equation (5.9) we obtain the limits of the 95% prediction interval are
computed to be (15.299,18.914). For comparison we have summarized the results
for all three methods:

Method Estimator Point est. 95% Prediction limits
) A Vo + 2.3629
Classical: Xoc = sy — 17.020 (15.090,18.775)
Inverse: )A(OI = 1.158 + 0.17803y, 17.189 (15.398,18.979)
A Yo + 6.37126
Orthogonal :  Xoihogy = 5 EI093 17.183 (15.299,18.914)

A couple of points are worth noting:

(1) the orthogonal estimate lies between the classical and inverse estimates.

(i) the 95% prediction interval widths for all three procedures are almost
identical.

6.2 Animal Fat

D’Antuono et. al. (1991) describe a calibration experiment in which
instrument readings (Y) were obtained on the carcasses of animals having
varying fat content (X). The aim of the experiment was to establish a
calibration equation so that future fat levels could be predicted from the
reading of a probe inserted into a carcass rather than having to dissect the
animal. The data are reproduced below:

X;14.06|3.94|2.06]4.86|3.31|3.26|3.17 |4.60(2.53|4.02]4.78 |4.29|2.62|1.74

1

(13 (13 |7 |20 |8 |11 |12 (15 |9 (13 |12 |18 |8 |7

X;|3.21]3.06]2.94|3.34|3.61{2.62|2.55|3.56|3.21|3.44{2.23]2.89|3.86|2.61
(9 112 113 {14 |9 (60 |7 {14 {10 9 6 |8 |13 |7

X;|1.60|4.25(2.72(1.26|5.05|3.45|4.86|2.49(2.20|3.11[3.30 | 3.80
Yi|3 |14 |7 [4 119 |13 15 [8 |6 9 19 |13




We will use the first 39 observations for model-fitting, keeping the last
observation (3.80,13) for prediction.

The sample covariance matrix € is :

g = | 0-868  3.252
T 1 3.252 15.783

The principle eigenvalue and eigenvector of & are:

T
A = 16461036 e = [0.204172 0.978935]
From which we obtain :

Iy .9
B, = 0.978935

= ———— = 3749
0.204172

B, = 10.5128 - (3.749)(3.2477) = -1.663

The orthogonally-calibrated estimate for the last observation whose reading
from the probe was 13 is 3.911. Furthermore,

4.661 0 0
V = 0 2.005 -0.579
0 -0.579  0.178

and for a 95% prediction interval
a = 22257 ; b = -168.421; ¢ = 298.749

Using equation (5.9) we obtain the limits of the 95% prediction interval are
computed to be (2.839,4.728). For comparison we have summarized the results
for all three methods:



Method Estimator Point est. 95% Prediction limits

A yo + 1.6639

Classical:  Xpe = = —gorig— 3911 (2.858,5.009)

Inverse: }%01 = 1.081 + 0.20606y, 3.760 (2.832,4.689)
A Yo + 5.059

Orthogonal . XO(Ol’thOg) = 7‘:7%— 3.766 (2.839,4.728)

The orthogonal and inverse estimates are very similar, although the orthogonal
has performed marginally better when compared with the actual value of 3.80.

7.  Conclusions

In this paper we have presented a third alternative to the existing
methodologies of inverse and classical regression for calibration problems.
Simple computational formulae have been provided for orthogonal regression
estimates. Furthermore, we have demonstrated the equality of this form of
estimation with principal components regression. Procedures for obtaining
interval estimates in the orthogonal case have also been provided and these
have been illustrated with the wuse of previously published calibration
examples arising from industrial applications.

We believe that the use of orthogonal calibration presents a unified
methodology for calibration problems. Furthermore we suggest that orthogonal
calibration should become the de facto approach for practitioners grappling
with the dilemma of deciding whether to regress X on Y or Y on X. It is argued
that if it is legitimate to perform either regression then it is equally valid
to use a procedure which guarantees that the resulting estimate will lie
between the estimates produced by the classical and inverse methods. The
advantage of our procedure is that it finally lays to rest the vexing question
of "are there two regressions?".
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