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Statistical Issues in Ecological Risk Assessment
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ABSTRACT
Ecological risk assessment (ERA) is concerned with making decisions about the

natural environment under uncertainty. Statistical methodology provides a natural
framework for risk characterization and manipulation with many quantitative ERAs
relying heavily on Neyman-Pearson hypothesis testing and other frequentist modes of
inference. Bayesian statistical methods are becoming increasingly popular in ERA
as they are seen to provide legitimate ways of incorporating subjective belief or
expert opinion in the form of prior probability distributions. This article explores
some of the concepts, strengths and weaknesses, and difficulties associated with both
paradigms. The main points are illustrated with an example of setting a risk-based
“trigger” level for uranium concentrations in the Magela Creek catchment of the
Northern Territory of Australia.

Key Words: trigger values, Bayesian statistics, natural resource management, sta-
tistical inference.

INTRODUCTION

Environmental risk assessment is not new. An early application can be found in
the setting of permissible occupational exposure limits for chemicals in the work-
place back in the 1930s (Eduljee 2000). However, it was not until much later that
the “risk paradigm” was institutionalized and mandated by the environmental pro-
tection agencies of the world. There is little doubt that environmentalism of the
1970s achieved a great deal, as noted by Sunstein (2002). However, the “command
and control” approach did little to elevate our understanding of the ecosystem and
resulted in data rich–information poor agencies that were ill equipped to make
more comprehensive and holistic assessments of the environment. The 1980s saw
the emergence of risk assessment as a regulatory paradigm, although the ensuing
decade was dogged by a lack of agreement on what constituted a risk assessment, a
confused lexicon, and inconsistent methodologies. In particular, many quantitative
risk assessments were little more than an assignment of subjective probabilities to
various adverse outcomes, where the assigned probabilities were manipulated by an
oftentimes dubious and concealed calculus. In addition, the terms hazard and risk
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were often used interchangeably and synonymously or defined mathematically as
risk = hazard × exposure. In my view, neither is correct.

The central element of risk is uncertainty—it is a probabilistic concept although this
is not a shared view. Duckworth (1998), for example, believes that risk is a qualitative
term and “is not in itself a measurable quantity and the term should not be used
synonymously with probability (p. 10).” He notes that “to ‘take a risk’ is to allow or
cause exposure to the danger (p. 10).” The counter view is that in the absence of
uncertainty (about timing and consequences) there is no risk, only defined events
having entirely predicable and known consequences. This is consistent with Bridges
(2003), who defines risk as “a science-based process for establishing the likelihood of
adverse effects (p. 1347)” and Gentile et al. (1993), who state “risk assessment is the
process for determining the probability, with associated uncertainty, of a particular
event occurring as a result of a specific agent or stressor (p. 242).”

During the 1980s, risk assessments became the purview of the technical elite and
agencies tended to adopt what has been referred to as the DAD approach—Decide,
Announce, and Defend (Kwiatkowski 1998) based (in part) on increasingly techni-
cal risk assessments. By the 1990s the emphasis had shifted so that environmental
protection was based on more holistic concepts of ecosystem science, whereby a
systems understanding was sought that looked at multiple stressors and multiple
endpoints, their relationships with each other and their interaction in a bigger land-
scape. Environmental risk assessment was embedded within this framework, but was
no longer an end in itself. In 1992 the USEPA published its environmental risk as-
sessment framework and this was followed by the publication of its environmental
risk assessment guidelines in 1996.

Australia has been widely recognized as being at the forefront of development of
risk management frameworks (McCarty and Power 2000; Milke 2003). Current think-
ing and practice is exemplified in The Australia/New Zealand Standard for Risk Man-
agement AS/NZS 4360 (Standards Australia 1999) and the ANZECC/ARMCANZ
water quality guidelines (ANZECC and ARMCANZ 2000).

In this article we explore some of the statistical aspects of ERA that are both im-
peding and aiding the development of quantitative risk assessments. We commence
with a brief discussion of risk metrics before moving on to consider risk calculus and
related statistical methodologies. Finally, with the use of some examples we illustrate
the use of Bayesian and frequentist methods for analyzing chronic and acute toxicity
data in the context of aquatic ecosystem protection.

RISK METRICS

The U.K. Department of Health (DoH) has assigned narrative terms to various
levels of risk associated with death in any year from various causes (DoH 1996). These
are reproduced in Table 1. As can be seen, this construct clearly equates “risk” with
probability as argued in this article.

The Society of Petroleum Engineers (SPE) has defined “acceptable” environ-
mental risks in terms of the frequency of occurrence for various damage categories
(Klovning and Nilsen 1995). These damage categories and risks are shown in Table 2.

The data in Tables 1 and 2 are not directly comparable, although a mapping can
be constructed as follows.
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Table 1. Risk of death in any year from various causes (DoH 1996).

Term used Risk estimate Example

High >1:100
Moderate 1:100–1:1,000 Smoking 10 cigarettes/day 1:200

All natural causes for 40 year old 1:850
Low 1:1000–1:10,000 All kinds of violence and poisoning 1:3,300

Influenza 1:5,000
Road accidents 1:8,000∗

Very low 1:10,000–1:100,000 Leukemia 1:12 000
Accidents at home 1:26,000
Accidents at work 1:43,000
Homicide 1:100,000

Minimal 1:100,000–1:1,000,000 Railway accident 1:1,000,000
Negligible 1:1,000,000–1:10,000,000 Hit by lightning 1:10,000,000

Radiation leak from nuclear plant 1:10,000,000

∗More recent estimate is 1:16,000.

Let p = P[at least one incident in n years] = 1 − P[ no incidences in n years].
Furthermore, define θ as the probability of an incident in any given year. Then
p = 1 − (1 − θ)n (assuming “incidences” are independent from year to year) and
hence θ = 1 − (1 − p )

1
n and letting p = 1

n
we obtain values of θ for various n

(Table 3).
The risks in Tables 1 and 3 and their corresponding labels have been plotted on

a logarithmic scale for ease of comparison (Figure 1).
From Figure 1 we see the mismatch between the SPE’s definition of “acceptable”

environmental damage and the DoH scale of risk to humans. For example, the SPE’s
risk for “serious” environmental damage is about two orders of magnitude greater
than the most serious DoH risk category. It is precisely this sort of ambiguity and
inconsistency in the application and interpretation of risk metrics that prompted at
least one professional society to try to standardize the risk metric.

In his June 1996 presidential address to the Royal Statistical Society, Adrian Smith
suggested that the public needed some simple measure of risk to alleviate the irra-
tional behavior associated with individuals’ perception of risk. He coined the term
“riskometer” and campaigned for the development of a one-dimensional risk scale
in a spirit similar to the Fujita scale for tornadoes, the Richter scale for earthquakes,
the Beaufort scale for winds, and the decibel scale for sound intensity.

Table 2. Society of Petroleum Engineers
‘acceptable’ environmental risk.

“Acceptable” environmental
Damage category risk: once every

Minor 10 years
Moderate 40 years
Significant 100 years
Serious 200 years
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Table 3. Imputed risk probabilities (probability of
incident in any given year).

“Acceptable”
Damage category environmental risk

Minor 0.0105
Moderate 0.000633
Significant 0.0001005
Serious 0.0000251

Statistician Frank Duckworth (co-developer of the Duckworth/Lewis method for
cricket scoring) took up the challenge and devised a “risk number” (Duckworth
1998). A central concept to Duckworth’s risk number is the concept of a loss function.
He defines the loss function L(·) to be the expected life shortening expressed as a
proportion of normal life expectation. More formally

L(y , s, e) = S(y , s, e)(1 − q )
E (y , s, 0)

where S is the expected shortening of normal life as a function of the subject’s
age, y and sex, s for degree of exposure e ; E (·)is the expectation of life for a healthy
person of the same age and sex but with zero exposure, and q is a quality of life
factor for the period of infirmity (death or coma q = 0; good health q = 1).

The risk metric proposed by Duckworth is based on the “risk magnitude,” R ,
defined as:

R = L(y , s, e) exp(−r t)

where t is the time in years before the consequence is felt and r is a discount rate.
For risks associated with chronic exposure, Duckworth suggests integrating R over
the subject’s remaining expected lifetime, that is R = ∫

L exp(−r t) dt . Finally, the
“risk number” is obtained by adding eight to the log (base 10) of R (the rationale
being that the most unlikely events we would ever contemplate have estimated risks
of about 10−8 and thus adding 8 to the log of this risk sets the origin of the scale of

Figure 1. Mapping of Petroleum Industry’s damage categories and Department of
Health risk categories.
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the risk number at zero). Formally, the risk number (�) is defined as:

� = 8 + log10 R

Duckworth has computed the risk number for a variety of events. These range
from � = 0.3 for a 100-mile rail journey (in the UK) to � = 8.0 for suicide.

RISK CALCULUS

Environmental risk assessment is about trade-offs. In assessing the risk to the envi-
ronment posed by a certain activity, there are strong parallels with statistical process
control (SPC) methodologies that have been utilized by the manufacturing indus-
tries since the 1930s. Fox (2001) refers to “green” and “brown” statistical paradigms to
reflect the schism between industrial and environmental statistics, arguing that there
should be a greater degree of cross-talk between these two areas. The Australian and
New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC and ARMCANZ
2000) helped move the Australian water industry further down the risk path and
advocated the use of SPC tools such as control charts for water quality monitoring
and greater reliance on percentiles rather than averages. Not only are percentiles
often more appropriate as indicators of water quality but by definition, they have
a simple probabilistic interpretation and are thus potentially more amenable to a
risk-analytic approach.

Frequentist Statistics

“Classical” or frequentist statistics is based on the notion of repeated sampling
and sequences of infinite realizations of repeatable events. As noted by Root (2003),
environmental protection agencies adopt the logic of the courtroom in making
environmental assertions, but that “the logic of the courtroom operates under the
handicap of working with non-repeatable events.”

The word probability appears most commonly as a “p -value” in the context of
statistical hypothesis tests. The predominant view among scientists is that probability
is the quantification of uncertainty. In fact, the p -value of a test is the probability
associated with the observed data under the assumption that the null hypothesis is
true. If the null hypothesis is true, and if an experiment is repeated many times,
the p -value is the proportion of experiments that would give less support to the null
than the experiment that was performed.

Null-hypothesis tests are routinely misinterpreted by scientists. Widespread flawed
practices have been documented in many disciplines including ecology and
medicine (see Anderson et al. 2000). Conventional modes of inference are particu-
larly error-prone when Type II errors are costly. For example, conventionally Type II
errors are ignored in null-hypothesis tests, implying it is unimportant to detect an im-
pact when in fact, there is one. Large impacts with costly environmental impacts are
overlooked. Despite these difficulties, food and drug regulatory authorities, environ-
mental protection agencies, law courts and medical trials all accept null-hypothesis
testing as an appropriate method of inference. Reliance on traditional methods of
inference leads to logical errors in interpreting data. Environmental applications
are particularly error prone. Environmental risk assessments attempt to remediate
the situation by applying methods that take into account the chances of incorrectly
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concluding there are important environmental impacts, and of concluding incor-
rectly that there is no important impact.

Bayesian Statistics

Increasingly frustrated with purely data analytic approaches to environmental
assessment, many natural resource managers are turning to Bayesian methods as
this framework is seen to alleviate some of the concerns associated with the binary
decision-making process that characterizes classical Neyman-Pearson hypothesis test-
ing. Although the Bayesian approach provides a logical and consistent method for
melding prior probabilities with evidence in the form of data, the omnipotent issues
concerning choice of priors and parameterization of complex hierarchical models
invariably arise (Bier 1999). In addition, Bayesian risk assessments have been the sub-
ject of debate and strong criticism as they have been seen to hinder rather than help
in courts of law. Much of the concern stems from the misrepresentation of statistical
evidence via an error of logic referred to as the “prosecutor’s fallacy” whereby the two
conditional probabilities (hypothesis given evidence) and (evidence given hypothe-
sis) are confused (Donnelly 1994). Another stumbling block for the Bayesians is the
perception that this is a highly technical methodology that is not readily understood
by the lay person. As reported in The Times (3 November 1997), the London Court
of Appeal reaffirmed its position on the role of probability and statistics in assessing
weight of evidence cases:

Introducing Bayes Theorem, or any similar method, into a criminal trial plunges
the jury into inappropriate and unnecessary realms of complexity, deflecting
them from their proper task”

Although some difficulties in interpretation exist, I argue that these can be over-
come through better communication and education. Nevertheless, as we seek to
refine existing risk paradigms and develop new ones, there are some clear take-
home messages that must be heeded if environmental risk assessment tools are to
find a prominent place in the natural resource manager’s toolkit.

EXAMPLE: DERIVING RISK-BASED TRIGGERS FOR AQUATIC
ECOSYSTEM PROTECTION

In this section we illustrate the use of both “conventional” (frequentist) and
Bayesian approaches to the setting of a “trigger” value for uranium concentrations in
the Magela Creek in the Northern Territory. Uranium mining in the Magela Creek
catchment has been undertaken for more than 20 years. The Department of En-
vironment and Heritage (DEH) used the statistical extrapolation method recom-
mended in the Australian and New Zealand Guidelines for Fresh and Marine Water
Quality (2000) to obtain a site-specific trigger value (to protect 99% of species) for
uranium of 5.8 µg L−1. This value is higher than the historical site-specific guide-
line value for Magela Creek of 3.8 µg L−1, and is about two orders of magnitude
above natural background concentrations (DEH 2001). The data used by the DEH
are taken from the 2000–01 Annual Report (DEH 2001) and are reproduced in
Table 4.
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Table 4. DEH (2001) NOEC data used to derive Uranium
trigger concentration.

Species Test endpoint NOEC∗ (µg L−1)

Chlorella sp. Cell division rate 129
Moinodaphnia macleayi Reproduction 18
Hydra viridissima Population growth 150
Mogurnda mogurnda Mortality 400
Melanotaenia splendida inornata Mortality 810

∗NOEC: no-observed-effect concentration.

As can be seen from Table 4, the NOECs range from 18 µg L−1 to 810 µg
L−1. In deriving the trigger of 5.8 µg L−1 the DEH associated all the NOECs in
Table 4 with chronic toxicity. Mortality is associated with acute toxicity whereas ef-
fects on cell division, reproduction, and growth are associated with chronic toxicity.
In order to “standardize” the data, it is conventional practice to apply an acute to
chronic ratio prior to analysis (J. Stauber, personal communication). This typically
involves dividing the acute mortality data by 10. The computation of trigger values
as recommended in the Australian and New Zealand Guidelines for Fresh and Ma-
rine Water Quality (ANZECC and ARMCANZ 2000) uses a variant of the approach
suggested by Aldenberg and Slob (1993). Using the BurrliOz software (available at
http://www.cmis.csiro.au/Envir/burrlioz/) supplied with the Australian and New
Zealand Guidelines with the standardized data of Table 3 (i.e ., 129, 18, 150, 40, 81),
a value of 3.11 µg L−1 is obtained for the 99% trigger value. This is a little over half
the value adopted by the DEH and very close to the historical value for Magela Creek
of 3.8 µg L−1.

The preceding analysis illustrates some of the difficulties with the derivation of
risk-based trigger levels for contaminants in aquatic environments. Not only will

Figure 2. Directed Acyclic Graph for Uranium NOECs example.
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Table 5. Summary statistics from posterior distribution of λ.

node mean stdev P2.5 median P97.5 sample

lamda 7.324 3.036 4.075 6.624 14.92 50,000

different results be obtained depending on the statistical model employed but
the acute to chronic ratio of 10 is quite arbitrary. An alternative approach is to
“let the data speak for themselves” so as to find an acute to chronic ratio that
maximizes the likelihood of the joint data set. A brief description of the method
follows.

Let X denote a chronic NOEC having probability density function (pdf) fX (x; θ)
where θ is a vector of parameters and let Y denote an acute NOEC. It will be assumed
that the distribution of Y/λ is the same as the distribution of X , where λ is the acute
to chronic ratio. Given a sample of n1 observations on X and n2 observations on
Y the maximum likelihood estimator (mle) for λ is that value that maximizes the
likelihood function L(λ) = ∏n1

i=1 fX (xi ; θ)
∏n2

j=1 fY (y j/λ; θ). For the data in Table 4,
we have x = {129, 18, 150} and y = {400, 810} with n1 = 3 and n2 = 2. Assuming
fX (x; θ) is a logistic distribution the mle for λ is found to be 7.451. Using λ = 7.451,
the re-scaled uranium data in Table 4 becomes {129, 18, 150, 53.68, 108.71} and the
revised 99:50 trigger value is estimated to be 5.34 µg L−1.1

Bayesian methods provide an alternative mode of inference by allowing us to
specify a prior distribution forλand then updating this on the basis of the data at
hand. The prior distribution may be “non-informative” if we have no particular
belief about the likely value of λ or can be chosen to reflect a “best guess.” Our
model is represented by the directed acyclic graph (DAG) as shown in Figure 2. As
before, both X and Y are assumed to follow a logistic distribution.

In Figure 2, X has parameters identified by the stochastic nodes “mu” and “tau”
whereas Y ’s parameters are the stochastic nodes “mup” and “taup” where mup =
mu·λ and taup = tau/λ.

We have chosen a Gamma(2, 0.1) as the prior distribution for λ. This is a positively
skewed distribution that has a mean of 20. Using Gibbs sampling and the WinBUGS
software tool 50,000 values were generated from the posterior distribution of λ.
These were used to obtain summary statistics (Table 5) and an empirical density
(Figure 3).

From Table 5 we see that the posterior density for λ has a mean of 7.324 and a
median of 6.624. This result agrees well with the maximum likelihood estimate of
7.451. A Bayesian 95% credibility interval for λ is from 4.075 to 14.92 suggesting that
the previously assumed “default” value of 10 is plausible (for these data).

Using the estimated median of the posterior distribution of λ = 6.624 the re-
scaled uranium data from Table 4 becomes 129, 18, 150, 60.39, 122.28 and the
revised 99:50 trigger value is estimated to be 6.64 µg L−1.

1It is acknowledged that the uncertainty in the estimated scaling parameter λ has not been
accounted for in this analysis. This could be done, although the additional complexity is
unlikely to enhance the subsequent interpretation.
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Figure 3. Empirical posterior density for λ based on 50,000 Gibbs samples.

CONCLUSIONS

Ecological risk assessment is an evolving science that attempts to provide a con-
sistent, rational, and scientifically defensible approach to environmental decision-
making under uncertainty. Standard tools of (frequentist) modes of estimation and
inference provide a natural framework for quantitative ecological risk assessments
and although their utility is not questioned, important issues remain unresolved.
Of the most pressing is the lack of a universally agreed metric for “risk” and an
agreed calculus for assigning and manipulating risk estimates. Bayesian methods of
estimation and inference are becoming increasingly popular in ERA due to their
inherent ability to introduce subjective belief and/or expert opinion in the form
of prior probability distributions. Although this is certainly an attractive feature in
the context of natural resource management, the omnipotent issues of arbitrariness
of choice of prior and parameterization of complex hierarchical models invariably
arise.

Some of the advantages and disadvantages of both the frequentist and Bayesian
approaches have been illustrated in the context of determining “trigger” values for
uranium concentrations in the Magela Creek in the Northern Territory. It has been
shown that the resulting trigger level is dependent on both the statistical framework
adopted and the method by which acute and chronic toxicity data are combined.
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