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Abstract We have examined a number of statistical 
issues associated with methods for evaluating different 
tests of density dependence. The lack of definitive stan- 
dards and benchmarks for conducting simulation stud- 
ies makes it difficult to assess the performance of 
various tests. The biological researcher has a bewil- 

dering choice of statistical tests for testing density 
dependence and the list is growing. The most recent 
additions have been based on computationally inten- 
sive methods such as permutation tests and boot- 

strapping. We believe the computational effort and time 
involved will preclude their widespread adoption until: 

(1) these methods have been fully explored under a wide 

range of conditions and shown to be demonstrably 
superior than other, simpler methods, and (2) general 
purpose software is made available for performing the 
calculations. We have advocated the use of Bulmer's 

(first) test as a de facto standard for comparative stud- 
ies on the grounds of its simplicity, applicability, and 

satisfactory performance under a variety of conditions. 
We show that, in terms of power, Bulmer's test is robust 
to certain departures from normality although, as 
noted by other authors, it is affected by temporal trends 
in the data. We are not convinced that the reported 
differences in power between Bulmer's test and the ran- 
domisation test of Pollard et al. (1987) justifies the 

adoption of the latter. Nor do we believe a compelling 
case has been established for the parametric bootstrap 
likelihood ratio test of Dennis and Taper (1994). 
Bulmer's test is essentially a test of the serial correla- 
tion in the (log) abundance data and is affected by the 

presence of autocorrelated errors. In such cases the test 

cannot distinguish between the autoregressive effect in 

the errors and a true density dependent effect in the 
time series data. We suspect other tests may be simi- 

larly affected, although this is an area for further 
research. We have also noted that in the presence of 

autocorrelation, the type I error rates can be substan- 

tially different from the assumed level of significance, 

implying that in such cases the test is based on a faulty 

significance region. We have indicated both qualita- 

tively and quantitatively how autoregressive error terms 

can affect the power of Bulmer's test, although we sug- 
gest that more work is required in this area. These 

apparent inadequacies of Bulmer's test should not be 

interpreted as a failure of the statistical procedure since 

the test was not intended to be used with autocorre- 

lated error terms. 
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Introduction 

The notion that biological populations have self-regu- 

latory growth rates is one that has been fraught with 
difficulties (Pielou 1974; Dempster and Pollard 1986; 
Krebs 1991). The concept of density dependence has 
been a divisive issue among biologists, many regarding 
it as a mathematical abstraction rather than a biolog- 
ical reality. Fuelling the debate is the lack of a statis- 
tical paradigm for detection, estimation, and modelling 
of 'density-dependent' populations. 

In a recent study, Holyoak (1993) compared the per- 
formance of a number of tests for density dependence 
and provided some broad recommendations on the 

basis of statistical power. In view of our own difficulty 
in trying to meaningfully compare different tests, we 
decided to review some of the important statistical 

issues relating to the detection of density dependence. 
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In doing so, we have drawn attention to some of the 

problems in assessing the utility of individual tests for 

density dependence. Our intent is to highlight the fact 

that the design of a definitive comparative study is 

perhaps as difficult as the construction of an 'optimal' 
test. 

The development of a new test for density depen- 
dence is invariably motivated by a requirement to 

redress one or more shortcomings of an existing test 

or tests which have been identified in a previous com- 

parative study. With each new test comes the inevitable 

performance comparisons and so the cycle repeats 
itself. Since these comparisons tend to yield 'fuzzy' 
conclusions, the unfortunate consequence of this 

process is that the biologist is being unwittingly encour- 

aged to apply a battery of tests to a particular data set 

and to choose the most appealing result. Two difficul- 

ties are usually encountered : 

1. The new test is not universally superior and so will 

have its own set of limitations. 
2. Evaluation of the performance of the new test may 

depend in part on the methods used to construct the 

synthetic data on which the results are based. In par- 
ticular, the representation of the model's stochastic 

component and the introduction of autocorrelation. 

While it may not be possible to completely amelio- 

rate these problems, we suggest that the adoption of 

some benchmarks for comparative studies would be 

useful. Furthermore, the use of a 'standard' test pro- 
cedure against which all others could be compared 
would also be desirable. A suitable candidate is 

Bulmer's (first) test (Bulmer 1975). 

Holyoak (1993) suggested that the randomisation 

test of Pollard et al. (1987) was the most reliable, while 

more recently Dennis and Taper (1994) have claimed 

up to a 50% improvement in power by using their para- 
metric bootstrap likelihood ratio (PBLR) method. 

Both of these procedures have a heavy computational 

requirement which necessitates the use of a fast PC or 

workstation. In contrast, Bulmer's test statistic and crit- 

ical values can be computed on a calculator with min- 

imal effort. Furthermore, our own studies suggest that 

Bulmer's test performs well in a variety of situations 

and in a number of instances has better power than 

the PBLR and randomisation methods. Although 
Bulmer's test is not without its weaknesses and limita- 

tions, in terms of power "Bulmer's test is about the best 

we have" (Reddingius 1990). 
The remainder of this paper is divided into two sec- 

tions. The first deals with broad statistical issues asso- 

ciated with tests for density dependence and examines 

the strengths and weaknesses of Bulmer's test. The 

review of Holyoak's (1993) study in the second section 

serves to illustrate some of the difficulties with com- 

parative type studies. Additional insight into problems 
of testing for density dependence is provided with some 

results of our own investigations. 

Hypothesis tests and models 

The early methods of Varley and Gradwell (1960) have 

been developed and refined in a number of ways so 

that practising biologists now have a formidable arse- 

nal of statistical tests at their disposal. These include 

procedures due to Bulmer (1975), Pollard et al. (1987), 

Reddingius and den Boer (1989), Crowley (1992), 

Vickery and Nudds (1984), and most recently, Dennis 

and Taper (1994). Accompanying this relentless pur- 
suit of the 'best' test has been a plethora of compara- 
tive studies and performance assessments (Maelzer 

1970; St. Amant 1970; Ito 1972; Slade 1977; Bellows 

1981; Gaston and Lawton 1987; Hassell et al. 1989; 
Solow 1990; Solow and Steele 1990; Vickery and Nudds 

1991; Woiwod and Hanski 1992; Holyoak 1993; Wolda 

and Dennis 1993). Unfortunately, such studies gener- 

ally fail to provide clear insights and recommendations 

that can be translated into standard statistical practice. 
Instead, we have a bewildering choice of statistical 

approaches with guidelines for their use along the lines 

of "test a is best for data conforming to model 6, except 
when the effects of c are substantial, in which case test 

?/is preferred". This may be satisfactory for simulation 

studies where the data are synthetic and generated from 

a known functional form; however, it is of limited prac- 
tical value. There appears to be a lack of recognition 
of the fact that in simulation studies the model comes 

first and the test for density dependence second. In 

practice it is, or we believe should be, the other way 
around. So while it may be meaningful to talk about 

a test's 'specificity' in relation to simulated data this 

concept probably does not apply in practice. It is 

difficult to conceive that biological populations con- 

form to some predetermined mathematical model such 

as an exponential logistic, a multiplicative logistic, or 

power model. Indeed, depending on parameter values 

chosen, each of these models may describe the observed 

population abundances equally well. We believe there 

is a burden of proof (Dennis and Taper 1994) that the 

case for density dependence must be established before 
models for its manifestations are contemplated. 
Furthermore, the test for density dependence should 

not be embedded in a particular model form. For 

example, one could test a null hypothesis of density 

independence (i.e. random walk in logarithms of pop- 
ulation size) by examining H0: r - 0 in the model Nl+] 
- Ntexp[r(l ? aNt)].^t or by testing the hypothesis 
H0: ? = 1; a = 0 in the model Nx+l = AJVJ1+(<!#,)*]-?.?, 

(where ^is a random error term). That different results 

arise because of the different functional forms and the 

manner in which parameters and their standard errors 

are calculated is often remarked upon. Holyoak and 

Lawton (1992) lamented the fact that different tests 

produced different results - an observation they 
ascribed to the different assumptions used in con- 

structing the tests. Holyoak (1993) noted that "the 
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usefulness of individual tests will depend partly on 

which population model is the best descriptor of pop- 
ulation data", while Dennis and Taper (1994) observed 

that conclusions among studies "seem to vary depend- 

ing on which methods are used". It is also important 
to realise that differences between models arise not only 
from the use of different deterministic functions, but 

also by the way in which the stochastic component is 

represented for the same deterministic function. For 

example, both Holyoak (1993) and Dennis and Taper 
(1994) used a discrete logistic model of the form ?t+, 

-NtQ\p[r(? 
? aN{)]. The stochastic component in 

Holyoak's (1993) study was introduced by treating a 
as a random coefficient, while Dennis and Taper used 

fixed coefficients with an additive error component 
inside the exponent. Different results and possibly con- 

clusions are to be expected and this aspect of com- 

parative evaluations makes it particularly difficult for 
end-users to decide on a single test for use with their 
data. 

We feel it is time to stand back and take a wider 
view of density dependence and associated statistical 

methodologies. First and foremost, the researcher 
should have a clear idea of the study objectives. For 

example, is one simply interested in establishing den- 

sity dependent behaviour in a biological population or 
is there an additional requirement to model the popu- 
lation dynamics? If so, the question "what do we wish 
to do with the model?" needs to be answered. 
Procedures borrowed from time-series analysis may 
provide the researcher with good forecasting abilities 
but can fall short as a descriptive tool. The converse 

may be true for simple models such as the logistic. 
In his correspondence on Bulmer's (1975) paper, 
Anderson (1976) suggested using a Box-Jenkins 

approach (Box and Jenkins 1970) for modelling den- 

sity dependence, although Bulmer (1976) remained 
unconvinced of the benefits of this approach. Bulmer's 
reluctance to use Box-Jenkins methods is understand- 
able given that these techniques were relatively new and 
no doubt less well understood and used 20 years ago. 
We believe other 'contemporary' approaches to den- 

sity dependent modelling (as distinct from testing for 

density dependence) should also be investigated. These 

might include, for example generalised linear models, 

generalised additive models, and Markov Chain Monte 
Carlo (MCMC) methods. Similar requests have been 
made by Wolda et al. (1994). 

Bulmer's test 

Ideally, a test of density dependence should satisfy the 

following criteria: (1) it makes minimal or no a priori 
assumptions about the response-generating mecha- 

nism; (2) it is simple to implement and interpret; and 

(3) it is unbiased and has desirable power characteris- 
tics for a wide range of models under the alternative 

hypothesis. Having applied the test to a particular data 

set the hypothesis of density independence is either 

accepted or rejected. The first outcome should signal 
that further modelling of density dependent behaviour 
is probably not warranted while the second outcome 

provides a prima facie case for more detailed model- 

ling, estimation, and inference. Tests based on resam- 

pling procedures such as the randomisation test of 

Pollard et al. (1987) and the parametric bootstrap of 

Dennis and Taper (1994) are attractive and certainly 
fulfil conditions (1) and possibly (3) although these gen- 

erally have a heavy computational requirement. 
Bulmer's test is a candidate, although it has been crit- 

icised by some authors for having poor power charac- 

teristics in the presence of temporal trends (Slade 1977; 
Pollard et al. 1987; Woiwod and Hanski 1992). It is 
common statistical practice to take remedial action 
when one or more assumptions of a parametric test 
have been violated. For example, violation of the homo- 

geneity of variance assumption in analysis of variance 
can have disastrous effects on computed P-values 

(Horton 1978). Rather than discarding the method or 

seeking a less powerful non-parametric alternative, a 

variance-stabilising transformation of the data is often 
the first avenue of redress. Similarly, corrective proce- 
dures for Bulmer's test should be explored when tem- 

poral trends are present. Bulmer (1975) recommends 

against any attempts to 'detrend' the series prior to 

testing for density dependence. However, if the trend 
is an artefact of an atypical x0 value, then one way to 

proceed might be to drop the first one or two obser- 
vations from the series. This procedure is not uncom- 
mon in simulation studies where some small fraction 
of the initial simulated output is discarded to reduce 

'start-up' effects. The decision to either accept or reject 
the null hypothesis of density independence should be 

independent of the choice of the initial value x0, since 
this observation presumably corresponds to an arbi- 

trary point in time. Values of x0 which are far removed 
from the carrying capacity are most likely the result of 

atypical or extreme environmental factors and as such 
should not be incorporated into a test of density depen- 
dence. A possible test of the appropriateness of the first 
m observations, {x0, *i,..., x?,-\} m<$ n, for testing den- 

sity dependence could be based on the change in some 
criterion (e.g. Bulmer's statistic) when these observa- 
tions are omitted. Such 'leave-one-out' procedures are 

commonplace in regression (Belsley et al. 1980) and 

geostatistical analyses (Isaaks and Srivastava 1989) and 
we believe they have a role to play in testing for den- 

sity dependence. More rigorous statistical investiga- 
tions into the applicability and use of these 'cross- 
validation' techniques in tests for density dependence 
are required. 

The Pollard et al. (1987) study of Bulmer's test was 
based on 200 simulations for series of length ? = 10 

generated from the model jct+1 = r + ?jct + et; (?^l)? 
with fixed values of r = 0.4; ? = 0.8, and normally 
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distributed errors having zero mean and variance (s2) 
of 0.01. A more comprehensive study would call for an 

examination of the effects due to changes in all five 

parameters (r, ?, ?, s2, x0). For example, based on 1000 

simulations with r = 0.4, ? = 0.3, ? = 30, s2 = 

0.1453, and x0 - 0.5714 we found Bulmer's test cor- 

rectly rejected the hypothesis of density independence 
99.2% of the time. However, when the initial value (x0) 
was changed from the equilibrium value of 0.5714 to 

0.25, the observed detection rate dropped to 53.8% and 
with .v0 = 1.0, the figure was 28.4%. We do not see 

this diminished performance as a failing of the test but 

rather a caveat to its use. Restrictive assumptions are 

a trait of most parametric tests, Bulmer's test is no 

different in this respect. 

Finally, we note that Bulmer's test cannot discern 

whether the density dependence is direct or delayed 

although it has been shown (Holyoak 1994) that 

Bulmer's test will consistently reject the hypothesis of 

density independence when the data contain only 

delayed dependence. 

Comparative studies 

We have examined Holyoak's (1993) paper in an attempt 
to highlight some of the difficulties encountered in con- 

ducting comparative studies of various tests for density 

dependence. The randomisation test of Pollard et al. 

(1987) was endorsed by Holyoak as being the most 

'reliable' (Holyoak 1993). However, the development of 

the parametric bootstrap test appears to have been 

motivated by a desire to redress the claimed low power 
of the Pollard et al. test (Dennis and Taper 1994). This 

is the most recent example of the comparative study 

cycle referred to in our introductory remarks. 

The conclusions arising from Holyoak's investiga- 
tion into the performance of some common tests of 

density dependence echo those made in a number of 

earlier studies (Ito 1970; Maelzer 1970; Holyoak and 

Lawton 1992; Woiwod and Hanski 1992 to name a few) 
and as such come as no great surprise. The recurring 

messages are: (1) inconsistent test conclusions fre- 

quently arise from different test procedures; (2) different 

test results are to be expected because of the different 

assumptions built into these tests; (3) rates of detec- 

tion (power) are affected by the presence of autocor- 

relation, temporal trends, spatial trends, series length 
and assumed model form; (4) regression-based tests 

generally perform poorly; and (5) there is no such thing 
as a globally optimal test of density dependence. 

Holyoak's study was based on an analysis of syn- 
thesised time series data 20 generations in length using 
a variety of models and parameter combinations. A mix- 
ture of fixed and random parameters were used for the 

density dependent models and the results of common 
tests for density dependence analysed using what the 
author terms a multivariate analysis of covariance. A 
number of important statistical considerations emerge 
and these are discussed in the following sections. 

Choice of parameter values 

Holyoak's choice of model parameters seems to have 

been fairly judicious so as to give a similar spread of 

abundances over the models considered. However, there 

were anomalies that were not fully explained (such as 

treatment of 'infeasible' parameter combinations and 

selection of initial values in the power model) which 

we found disquieting. Other problems associated with 

the selection of models and the assignment of para- 
meter values have been identified by Wolda et al. (1994) 
and we shall not repeat them here. The point we wish 

to make is that the arbitrary way in which these difficul- 

ties are resolved represents a potential source of bias 

in the final outcome of comparative studies. 

Representation of the stochastic component 

While the random-coefficient models adopted by 

Holyoak are certainly a legitimate way of introducing 
variation into the population models, we nevertheless 

feel that this aspect of the study requires a more com- 

prehensive investigation. In particular, it would be use- 

ful to know to what extent rates of detection are 

influenced by (1) non-normality of parameter and/or 

error distributions, and (2) correlated errors and/or 

parameter values. It is not our intention to conduct 

comprehensive simulation studies in this paper, but to 

report some preliminary investigations into these 

effects. The correlated errors issue is discussed in detail 

in the following section. Our assessment of the effects 

of non-normality is based on a limited simulation 

study using the so-called exponential logistic model 

(Holyoak's model 2) with values of the a parameter 
first generated from a normal distribution (as in 

Holyoak 1993) with mean 0.01 and standard deviation 

0.0001 and secondly, from a displaced exponential 
distribution having the same mean and standard 

Table 1 Rates of detection 
(based on 1000 simulations) 
for the exponential logistic 
model for selected ? and r 
using normally distributed and 
exponentially distributed a 
values 

r ? = 10 ? = 20 ? = 30 
value Normal Exponential Normal Exponential Normal Exponential 

1.0 67.5 65.6 98.7 98.4 100.0 100.0 
0.2 11.2 7.1 19.5 17.2 28.6 29.6 
0.1 6.4 4.6 11.1 8.0 14.4 12.7 
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Table 2 Average rates of 
detection (%) for three tests of 
density dependence when 
applied to data generated from 
Dennis and Taper's (1994) 
logistic model with b = ?0.01 
(PBLR parametric bootstrap 
likelihood ratio) 

Test method Source Average detection rate 

Bulmer Fox and Ridsdill-Smith 49.13 
PBLR Dennis and Taper (1994) 47.13 
Randomisation (Pollard et al. 1987) Dennis and Taper (1994) 36.53 

deviation. The exponential distribution is highly 
skewed and thus represents a gross violation of the nor- 

mality assumption. 
One thousand series of length 10, 20, and 30 were 

generated for r values of 1.0, 0.2, and 0.1. The rates of 

detection for Bulmer's test for the normal and expo- 
nential cases are in reasonably close agreement with 

larger differences being observed for small series length 
and small r (Table 1). 

In contrast, Dennis and Taper (1994) used the logis- 
tic model with fixed parameter values and a separate 
error term to compare the performance of their PBLR 

method with the Pollard et al. randomisation test. The 
results presented in their Table 7 (page 220) indicate 
the superiority of the PBLR method when applied to 
selected cases of density dependent data. We have 

reproduced the set of simulations for the density depen- 
dent data (corresponding to b - ?0.01 in the Dennis 
and Taper model) and estimated the power of Bulmer's 
test using 1,000 simulations for each combination of 
other model parameters (n0, s, and a). Average rates 
of detection for all three methods for the b- ?0.01 

data are compared in Table 2. 

On average, Bulmer's test had a marginally higher 
rate of detection than the PBLR method with the 
randomisation test performing worst. Interestingly, 
Holyoak found that the Pollard et al. test outperformed 
Bulmer's test for data generated from the logistic model 

(average rates of detection of 61.1 % and 56.8% respec- 
tively). The point we wish to make is that neither study 
is definitive and the disparity of results is most likely 
due to the different treatments of the stochastic com- 

ponent and different parameter values used in each 

study. 

Treatment of autocorrelation 

Results presented by Holyoak were based on descrip- 
tive statistics of the synthesised observations and not 
on the properties of the parameter or error distribu- 
tions. In particular, the autocorrelation referred to by 
Holyoak is in fact the (standardised) covariance 
between ?^+? and X{ which is not the same as the auto- 
correlation between the error terms.1 As will be shown 

later, the former is a function of other model para- 

meters and as such has no intrinsic interest. 

Autocorrelated errors are most likely to arise when the 
effect of the random disturbance is not instantaneous, 
but is likely to occur in future periods. It is difficult to 

speculate on the sources of autocorrelated errors, 

although it is possible that this phenomenon may be a 

consequence of environmental (both spatial and tem- 

poral) effects and /or measurement error. 

Ito (1972) identified two sources of autocorrelation 

(serial correlation) in relation to the simple regression 
of a single dependent variable Y on a single indepen- 
dent variable x. The first of these involved a first-order, 

autoregressive [AR(1)] process for the assumed addi- 
tive error terms and the second was what has become 
known in the econometric literature as a lagged depen- 
dent variable model (Fomby et al. 1988). By definition, 

density-dependent models represent a class of lagged 
dependent variable models. To take a simple case we 
assume the following density-dependent model: 

xt+I = ?xt + et+1 |?|< 1 

where, without loss of generality, the ? values have been 
centred about their mean. Assuming the errors are inde- 

pendently distributed with common variance s2, then 
the lag 1 covariance between the ? values is ?s2/(1 

? 
?2) 

and the first-order correlation coefficient is ?. That 

Holyoak observed strong negative relationships bet- 
ween this autocorrelation and rates of detection is to 
be expected since the latter will increase as ? (and hence 
the autocorrelation between the ? values) becomes 
smaller. The true effects of autocorrelation can be 
examined through the model given above with an 

autoregressive structure for the error term, i.e. 

et+\ = ?ex + Wt+i 

where the ut are independently, identically distributed 

(iid) random variables with zero mean and variance s2. 
It is relatively easy to show that the covariance between 
the regressor xt and error et+i for this model is 

fs? 
^0 

(1-f2)(1-?f) 

This dependency between the regressor and the current 
error term is in contrast to the previous model where 
the regressors are related only to error terms of the pre- 
vious periods. The effects of this 'contemporaneous' 
correlation (Fomby et al. 1988) on the power of 
Bulmer's test were examined by Reddingius (1990) in 

response to the claim by Solow (1990) that its presence 

1 
Holyoak never intended to examine the effects of correlated errors 

(personal communication) 
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Table 3 Rates of detection (%) for Bulmer's test when applied to 
density dependent data generated using Eq. 1. Values for ? refer 
to the series length. All results based on 1,000 simulations 

f = -0.8 f -0.0 f= 0.8 
? value r = 0.2 r = 0.4 r = 0.2 r = 0.4 r = 0.2 r = 0.4 

/!= 10 
-0.8 99.6 100 97.9 100 73.5 100 
-0.3 99.3 98.9 83.3 85.1 26.9 27.7 

0.3 93.5 92.9 40.2 41.1 3.2 2.6 
0.8 72.3 72.5 8.4 10.0 0.4 0.4 

n = 20 
-0.8 100 100 100 100 95.1 100 
-0.3 100 100 100 99.9 51.2 51.6 

0.3 100 100 87.1 86.5 4.2 3.9 
0.8 95.2 95.2 19.1 18.8 0.4 0.3 

? = 30 
-0.8 100 100 100 100 99.3 100 
-0.3 100 100 100 100 67.1 69.9 

0.3 100 100 98.7 98.7 5.9 6.5 
0.8 99.8 99.7 28.2 29.6 0.0 0.0 

did not affect the density independence in the null 

model when ? = 1. Reddingius demonstrated that 

Solow had unfairly penalised Bulmer's test and dis- 

missed Solow's claim that the test is non-robust and 

lacks power as being 'fcnot very helpful". Reddingius's 
rather casual remark that the introduction of autocor- 

related errors is an "obvious 'small' modification of the 

original model" belies the potential impact of this 

effect. 
In developing his test for density dependence, 

Bulmer (1975) believed ? would lie in the range 0-1. 

Reddingius and den Boer (1989) attribute this to the 

fact that "for negative values of ?, Bulmer's second test 

appears to be worthless" but suggested that there are 

no biological reasons for such a constraint. Our own 

simulation studies reveal that Bulmer's (first) test has 

exceedingly high power in such cases. 

We have investigated the power of Bulmer's test for 

the lagged dependent variable model with autoregres- 
sive errors : 

xl+I = r+?xt+et+1 |?|< 1 

el+? = f^ + ul+l |f| < 1 

For ? = 1 and f = 0 this is equivalent to a random walk 

(r = 0) or random walk with drift (r F 0) (Pollard et 

al. 1987). The mean of the ? values changes with r and 

? while the variance is a function of s2, f, and ?. The 

rates of detection for Bulmer's test were obtained from 

1,000 simulated data sets of length ? for each of the 

parameter combinations considered (Table 3). The ini- 

tial value, Xo, was set equal to the equilibrium value 

and s2 was adjusted to give an approximate 8% 

coefficient of variation for the ? values. 

A number of features are evident from Table 3: (1) 

generally speaking, rates of detection increase with 

increasing series length; (2) there is a negligible effect 

between different r values used - this is attributed to 
the 'standardisation' of initial values, series mean and 
variance as a function of r; (3) the rate of detection is 
almost 100% when f is negative 

- irrespective of the 
value of ?; (4) rates of detection are higher for nega- 
tive ? values; and (5) in the absence of autocorrelation 

(f = 0) the rate of detection for positive ? values is 

acceptable only for series of at least length 30. Positive 

? and/or f values require longer series for the density 
dependence to be detected. 

There is nothing particularly new in these findings 
although the most interesting phenomenon, which has 
not been previously studied in great detail, is the effect 
of autoregressive errors. As pointed out by Holyoak 
and others, Bulmer's test is essentially a test of auto- 
correlation (one only need compare Bulmer's statistic 
with the Durbin-Watson test statistic for serial corre- 
lation to see this). Thus, it is difficult to conclude in 

any particular instance whether or not rejection of a 
null hypothesis is due to a density dependent effect, 
autocorrelated errors (which can arise from external, 
environmental impacts), or a combination of both. 

For the density independent case the null hypothesis 
has been incorrectly rejected about 5% of the time when 
the error terms are independent (f = 0) and there is no 

drift in the series (r = 0) (Table 4). In the presence of 

drift, Bulmer's test becomes conservative in the extreme 

with no rejection of the null hypothesis. More impor- 
tantly is the test's sensitivity to negatively autocorre- 

lated errors (f = ?0.8). The crucial observation is that 
in the presence of autocorrelated errors, the type I error 

rate is nowhere near the nominal 5%. We conclude that, 
in such instances, the detection rate is based on a faulty 

significance region and therefore comparisons between 

tests in the presence of autocorrelated errors are rather 

meaningless. 
This situation parallels closely the general require- 

ment in statistical estimation for unbiasedness when 

assessing the quality of competing estimators. The 

notion of unbiasedness is also used in hypothesis test- 

ing. Loosely speaking, a statistical test is unbiased if 

the maximum power of the test (where power is defined 
as the probability that the test rejects the null hypoth- 
esis) when the null hypothesis is true, does not exceed 
the level of significance. Clearly, Bulmer's test (as it 

stands) is not unbiased in the presence of autocorre- 

lated errors. Furthermore, the results presented in 

Table 4 Rates of detection (%) for Bulmer's test (57? level of 
significance) using random walk data (density independent) 
generated using Eq. 1 with ? =1. All results based on 1,000 
simulations 

f = -0.8 f = 0.0 f = 0.8 
n r = 0 r = 0.4 r = 0 r = 0.4 r = 0 r = 0.4 

10 55.1 0.0 4.7 0.0 0.3 0.0 
20 72.0 0.0 6.5 0.0 0.1 0.0 
30 76.9 0.0 6.1 0.0 0.0 0.0 
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Holyoak's Table 1 would suggest that the regression 
procedures and possibly Crowley's test are biased even 
in the absence of autocorrelated errors. Thus it is doubt- 
ful as to whether power comparisons involving these 
tests will permit any meaningful conclusions. 

In defense of Bulmer's and other parametric tests, 
we repeat our earlier sentiment that this should not be 
construed as a failing of the test, but rather an indi- 
cator that special care must be taken to identify and 
take account of violations of a test's assumptions. In 
this respect we add our support to Reddingius' (1990) 
claim that Bulmer's test has been unfairly penalised 
since we are requiring it to perform in situations for 
which it was never intended to be applied. Bulmer's 
test was developed under the explicit assumption that 

f = 0. When this is the case the two sets of hypotheses 
{H0: ? = 1 versus H^ ? < 1} and {H0: ? = 1 versus Hj: 

? < 1} are equivalent and no difficulties arise. However, 
when f f 0, hypotheses couched in terms of ? corre- 

spond to an infinite number of ? values, depending on 
the value of f, and so the results are unreliable. To illus- 

trate, consider two variations of Eq. (1): suppose model 
I has parameters {r = 0; ? = 0.5; f = ?0.8} while 
another model, model II, has parameters {r = 0; 

?= -0.8; f = 0.5}. In both models I and II the 
first-order serial correlation between the ? values is 

? = ?0.5, and therefore Bulmer's test will reject the 

hypothesis of density independence with the same 

power even though the density dependent effect in 
model II is far more pronounced. This indeterminacy 
is succinctly revealed by writing both parts to Eq. 1 
as a single model using the backward shift oper- 
ator, ? where BXX = Xt-i (Box and Jenkins 1970): 
(1 ? 

f5)(1 
? 

$B)xx - ut. Using this representation it is 

apparent that f and ? are completely exchangeable. 
Finally, we note that the same model is produced by 
setting either f = 0 or ? = 0 in Eq. 1. So if f has to be 
estimated we expect there to be little additional infor- 
mation about ? and therefore any test of density depen- 
dence which allows for f F 0 will have low power. 

It can be established that for the autoregressive 
model just considered, the first-order serial correlation 

Fig. 1 Serial correlation between ? values as a function of density 
dependent parameter (?) and autoregressive parameter (f) 

-0.4 

-0.6 

-0.6 -0.4 -0.2 0.0 0.2 0.4 

F (autoregressive parameter) 

between the ? values is (f + ?)/(1 + ?f) (note that when 

f = 0 this reduces to ? as before). The inverse rela- 

tionship between a test's power and ? has already been 
noted for the f = 0 case. Clearly, this effect can be 

amplified by making f negative. Thus as f -> ?1, so 
too does the serial correlation between the ? values - 

regardless of the value of ?. This is graphically illus- 
trated in Fig. 1 where the serial correlation has been 

plotted as a function of f for selected values of ?. Thus, 

Holyoak's empirically based conjecture that more 

positive autocorrelation (first-order serial correlation 
between the ? values) "would be expected to decrease 
the detection rates of those tests which rely on it 
to show the presence of density dependence" is 
correct. 

Fixed series length 

A major limiting factor in many density dependent 
studies is the small record length of the biological data 
and the corresponding low power of the statistical tests. 
For the biologist, ? - 10 represents a long series when 
the data are annual census counts. However, from a 
statistical point of view, inference based on samples of 
size ten is treacherous. Reddingius (1990) remarked that 
? - 25 is not a statistically large sample size and so "we 
cannot have very large power of our tests". The com- 

parisons presented in Pollard et al. (1987) were all based 
on ? - 10. This arose not so much from any biologi- 
cal considerations as computational ones - there being 
9! = 362,880 permutations of the x{ values to be con- 
sidered. The permutation tests may afford some advan- 

tage over parametric counterparts for small values of 

n, although our feeling is that tests of density depen- 
dence are really only reliable for series of at least 20 
and preferably 30 or more. 

Number of simulation runs 

The seemingly large number of simulations (e.g. 3,600) 
reported in Holyoak's Table 1 is not as impressive as 
this figure suggests. A reasonable number of para- 
meter combinations have been represented and for each 
of these, 25 simulated series were constructed so that 
for any model/parameter combination the resolution 
of detection rates is only 0.04. The large number of 
simulation runs reported comes from pooling the indi- 
vidual detection rates over all parameter combinations. 
We suggest a minimum of 100 simulation runs for each 

parameter combination would have been a more appro- 
priate number. It is interesting to note that, in another 

comparative study by the same author (Holyoak 1994), 
100 simulations were used and that an initial 2000 gen- 
erations were discarded to avoid the start-up effects 
referred to earlier in this paper. 
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Statistical analysis of results 

Holyoak has identified "statistics which bias detection 
of density dependence" by analysing the results of his 
simulation study using what he termed a "multivariate 

analysis of covariance" with the GLIM software. The 

analysis is in fact equivalent to a series of univariate 

logistic regressions (the GLIM software has no intrin- 
sic multivariate capabilities) - there being one for each 
of the seven test procedures considered. The dependent 
variable in each case is the rate of detection; the 

'explanatory' variables are statistics derived from the 
simulated series and include: first-order serial correla- 

tions, range, trend, skewness, kurtosis, mean, variance 
and a variance : mean ratio; a logit link was used to 
relate the mean rate of detection to these variables; the 
assumed error distribution was binomial. We have 
reservations about the utility of this analysis. Firstly, 
the covariates are themselves all artefacts of the model 
used to generate the data. Surely it would make more 
sense to attempt to relate rates of detection to one or 
two model parameters rather than a host of summary 
statistics which themselves are derived from the model 
and in some instances highly correlated (e.g. range and 

variance; mean, variance and mean : variance ratio). 
More importantly, the lack of independence between 
rates of detection for the various model forms has been 

ignored in Holyoak's analysis. The effects of this on the 

reported ? values could be quite serious. There also 
needs to be some justification for the choice of model 
used to relate rates of detection to potential explana- 
tory factors. The form chosen is common for the analy- 
sis of proportions, but so too are other formulations 

using different error/link combinations. 

Conclusions 

The paper by Holyoak (1993) has been examined in 
some detail since it seems to typify the current status 
of performance evaluation for tests of density depen- 
dence. Overall, Holyoak's study failed to clarify impor- 
tant issues relating to the identification of density 
dependence in biological populations. There were 
caveats ("all findings of this sort must remain tentative 

...") and uncertainties ("a number of tests appear to be 
tests of autocorrelation") which weakened any impact 
of the results and diminished our confidence in the con- 
clusions. Our uneasiness was also heightened by the 
small number of simulations, the absence of any inves- 

tigation into the effects of varying series length, 
non-normality and lack of independence in para- 
meter/error distributions. Furthermore, we are not 
convinced that the GLIM analysis has been the most 

meaningful way to interpret the simulation results, or 
the most appropriate from a statistical point of view. 
The important issue of autocorrelation has been dealt 
with only superficially, and has focused on the 

first-order serial correlation between log-abundances 
and not on what we consider to be the more relevant 
lack of independence in either error terms or parame- 
ter values. Additional problems with Holyoak's (1993) 
study have been identified in Wolda et al. (1994). 

Biologists have certainly benefited from the tools 
that mathematicians and statisticians have been able to 

provide for analysing complex dynamical systems. 
However, in the case of density dependence, they have 
also been confused by the bewildering array of options 
at their disposal. In this paper we have sought to high- 
light some of the difficulties associated with procedures 
for test development and evaluation, and the problems 
of 'fuzzy' conclusions. We have advocated the adop- 
tion of Bulmer's (first) test as a de facto standard on 
the grounds that it makes minimal a priori assump- 
tions about the response-generating mechanism, it has 
reasonable power characteristics over a wide range of 
alternative hypotheses and is easy to implement. We 
have drawn attention to some of this test's weaknesses, 
and indicated possible avenues for further investigation. 
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