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EXECUTIVE SUMMARY AND RECOMMENDATIONS 

Species sensitivity distributions (SSDs) remain a practical tool for the determination of safe threshold 

concentrations for toxicants in fresh and marine waters. While the fundamental SSD approach 

employed by jurisdictions around the world has remained similar over the last 20 years, variations do 

exist in some of the technical details of the methods and associated software tools that have been 

developed, sometimes leading to marked differences in results which can undermine confidence in 

SSD approaches. The Australian and New Zealand Guidelines for Fresh and Marine Water Quality 

(ANZG 2018) currently require the use of a software tool, Burrlioz 2.0 in the derivation of 

guideline values. While this has proved a highly valuable tool, a range of issues have also been raised 

over the years, including reports of ‘crashes’, numerical instability issues, and failure to converge to a 

‘solution’. There is also concern that the statistical distributions used by default did not always provide 

the best representation of the input data and the Burrlioz computer code was not open-source 

and ‘locked away’. Australia and New Zealand have recognised that future deployments of Burrlioz

(or some incarnation of Burrlioz) should be open-source and web-based, and there is considerable 

interest in the shinyssdtools R Canadian web-based shiny app (https://bcgov-

env.shinyapps.io/ssdtools/) front end to the ssdtools R package as a potential replacement to 

Burrlioz. This report summarises the outcomes of a one-year joint collaborative research project 

involving Australian and Canadian researchers who undertook extensive investigations into 

methodologies and tools associated with SSD modelling, focusing on Burrlioz and ssdtools. 

During the project, substantive additions and modifications to ssdtools were made, including: 

replacement of the fitdistrplus package by TMB to allow more control over model specification 

and transparency regarding convergence criteria; better assessment of numerical instability issues; 

the implementation of two mixture distributions (log-normal-log-normal and log-logistic-log-logistic); 

implementation of the inverse Pareto distribution; development of a function to mimic Burrlioz; 

the option to perform non-parametric bootstrap resampling (as is implemented in Burrlioz); and  

the ability to automatically rescale to aid model fitting. 

Research undertaken included exploring and resolving issues with numerical instability and developing 

alternative solutions for estimating hazard concentrations (HCx) and/or associated 95% confidence 

intervals of the Burr III and inverse Pareto distributions; comparisons between Burrlioz and 

ssdtools using collated benchmark and synthetic datasets; the development and evaluation of 

mixture distributions as a potential candidate for accommodating bimodal data; and an assessment 

of bias and coverage across a range of candidate distribution sets used in model averaging. Based on 

the findings, the project recommends that the Australian-New Zealand and Canadian jurisdictions 

adopt the R-package ssdtools using an expanded default set of distributions. 

https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
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RECOMMENDATIONS 

1. Software  

It is recommended that Australian-New Zealand and Canadian jurisdictions adopt the R-
package ssdtools (and its on-line implementation shiny ssdtools) as the default 
software tool for fitting SSDs to toxicity data for the purpose of deriving predicted no effect  
concentrations of chemicals in natural aquatic environments. 

2. Default distribution set 

A: The default list of candidate distributions in ssdtools should be comprised of the 
following: log-normal; log-logistic; gamma; inverse Weibull (log-Gumbel); Weibull; mixture 
of two log-normal distributions 

and, 

B: Australian-New Zealand and Canadian jurisdictions agree on a default set of distributions 
to use with ssdtools whether it be those identified in A above or some other set as may 
be defined from time to time. 

3. Implementation 

It is recommended that Australia-New Zealand encourage and facilitate an expeditious 
transition to ssdtools and the model averaging method. A period of overlap may be 
required whereby the results of either Burrlioz or ssdtools can be used and reported. 

In pursuit of this objective, it is further recommended that the responsible government 
departments in Australia and New Zealand provide support for education and training 
initiatives associated with the use of model averaging, ssdtools and the R computing 

environment. 

4. Periodic review and on-going collaboration 

It is recommended that Australian-New Zealand and Canadian jurisdictions agree to establish 
a framework to continue the R&D collaboration on SSD modelling between the two countries 
that has been initiated by this project. This framework should also provide oversight of 
periodic reviews, technical evaluations, and resolution of end-user issues.  

SUGGESTIONS FOR FURTHER INVESTIGATION 

Within the framework identified in Recommendation 4: 

1. Re-visit the candidate distribution set 

A: The addition of both versions of the inverse Pareto distribution to the candidate 
distribution list should be further explored to ascertain the desirability and utility of this 
option in the context of SSD modelling. 

B: Additional testing be undertaken to evaluate the alternative procedure more fully 
for obtaining point and interval estimates of HCx values in the inverse Pareto case. 
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C: Investigate the utility and desirability of including other mixture distributions, such 
as a lognormal – log-logistic. 

D: Resolve convergence issues with the Gompertz distribution and further evaluate 
the utility for inclusion in the candidate set. 

E: Investigate if the Burr III distribution provides additional flexibility that warrants 
inclusion in the default set. Further work would be required to understand how best to 
accommodate the Burr III into model averaging, given its boundary condition behaviour. 

2. Address software anomalies 

Undertake more detailed investigations to compare the performance of Burrlioz 2.0 and 

the ssd_fit_burrlioz function in ssdtools. These investigations should focus on 
instances where HCx estimates are substantially different to determine the reasons for the 
discrepancies.  

3. Enhance the parameter estimation framework 

Explore the use of L-moments: (i) as a possible method of establishing initial parameter 
estimates for iterative MLE techniques; and/or (ii) to (optionally) provide an alternative 
parameter estimation framework for SSD model-fitting. 

4.  Bias correction of parameter estimates 

Develop bias corrections for all distributions used in the candidate set and include an option 
for these corrections to be applied when estimating HCx using ssdtools. 

5.  Convergence issues with the log-normal-log-normal mixture distribution 
The proportion of bootstrap samples is sometimes low for the current default settings for the 
mixture distribution. Further investigation is required to understand and resolve this issue in the 
current development version of ssdtools 
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1 INTRODUCTION 

This final report summarises investigations undertaken by Canadian and Australian researchers into 

statistical and computational aspects of species sensitivity distribution (SSD) modelling. Professor 

David Fox (Environmetrics Australia and the University of Melbourne) and Dr. Rebecca Fisher 

(Australian Institute of Marine Science and University of Western Australia Oceans Institute and School 

of Plant Biology) were contracted by the Department of Agriculture, Water and the Environment 

(DAWE) while Dr. Carl Schwarz (StatMathComp Consulting, Vancouver, BC, Canada) and Dr. Joseph 

Thorley (Poisson Consulting, Nelson, BC, Canada) were contracted by Environment and Climate 

Change Canada. The broad objectives of the collaborative research project were: (i) to undertake a 

review of the statistical methodologies used by Australia and New Zealand to derive toxicant default 

guideline values (DGVs); and (ii) to make recommendations as to the suitability of the ssdtools R 

package and associated Shiny App (shinyssdtools) for the calculation of DGVs in Australian and 

Canadian jurisdictions. A more detailed list of specific investigations and issues to be addressed is 

provided in Appendix A of this report. 

1.1 The species sensitivity distribution (SSD) 

The determination of threshold concentrations for toxicants in fresh and marine waters below which 

a high proportion of all species will be protected from harmful effects is an exercise in balancing 

competing risks (Figure 1). Although a conceptual model only, Figure 1 makes clear the fact that the 

establishment of environmental limits cannot simultaneously minimise the cost to the environment 

and the cost to the user of that environment. As with most aspects of life, there is a trade-off between 

the benefits and impacts of human activity and environmental regulation seeks to identify that region 

identified in Figure 1 where the risks are in some sense ‘acceptable’. 

Prior to the early 1990s, threshold concentrations of toxicants in receiving waters were set by 

arbitrarily scaling concentrations derived from acute toxicity studies using a small number of species 

under controlled laboratory conditions. The scaling factor, also called the ‘assessment factor’ (AF), was 

invariably an order of magnitude or more (10, 100, 1000, etc.). Difficulties with this approach are self-

evident: the method had no basis in biology or ecology and therefore was difficult to defend; and 

perhaps more problematically, was that the level of protection afforded by a concentration so 

determined could not be quantified. 
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Figure 1. Illustration of the competing risks for ‘protectors’ and ‘polluters’ of the environment as a function of 

the level of enforced environmental protection (Fox 1999). As environmental protection increases (x-axis), 

the risks for those seeking protection of the environment decline, whereas the risk to operators increases. 

Dotted lines indicate the maximum ‘protector’ and ‘polluter’ risk respectively. 

Introduced in the late 1980s, the SSD injected a greater degree of statistical rigour into the process by 

which default guideline values (DGVs) are established. The SSD describes the cumulative potential for 

harm to a range of species as the concentration of a contaminant or other stressor increases 

(Posthuma et al. 2001). SSDs underpin the derivation of protective concentrations (PCx) for x % of all 

species, or hazardous concentrations (HCx) for 100-x% of all species, that are applied in most current 

formal water quality guideline value (GV) derivations (Fox et al. 2021). While not without its limitations 

and shortcomings, the SSD methodology was (to some extent) more statistically defensible and 

enabled researchers and practitioners to provide estimates of the fraction of species 

affected/protected together with an assessment of uncertainty in those estimates (Fox et al. 2021). 

Uptake of the SSD method over the intervening 40 years has been both slow and patchy and even 

today, researchers continue to debate the merits of SSD modelling (van den Brink et al. 2001, Forbes 

& Calow 2002). Despite a significant body of published research and numerous intensive reviews over 

the past 20 years aimed at improving SSD methods [e.g. (Posthuma et al. 2002, ECETOC 2014, Belanger 

et al. 2017, Carr & Belanger 2019, Fisher et al. 2019)], the fundamental SSD approach employed by 

jurisdictions around the world has remained similar. However, variations do exist in some of the 

technical details of the methods and associated software tools that have been developed and 

employed. These variations can lead to marked differences in results which has the potential to 

undermine confidence in SSD approaches. Despite the limitations, SSDs remain a practical tool and 

until a demonstrably better inferential framework is available, developments and enhancements to 

conventional SSD practice will and should continue (Fox et al. 2021). 
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1.2 SSDs in Australia and New Zealand 

The use of SSDs in Australia and New Zealand became more widespread in the early 1990s following 

the publication of ‘closed-form’ solutions for the determination of DGVs and associated confidence 

intervals by Aldenberg and Slob (1993) who fitted logistic distributions to No Observed Effect 

Concentration (NOEC) toxicity data. Motivated by this, David Fox and Graeme Batley worked together 

to improve the technique by using other probability distributions. Initial investigations into the use of 

Burr distributions (Burr 1942) were undertaken by Fox and subsequently by CSIRO statistician Quanxi 

Shao (Shao 2000). 

In the mid to late 1990s, Professor Barry Hart of the Water Studies Centre at Monash University 

chaired a working group established by the Australian Government to oversee the revision of the 1992 

ANZECC Water Quality Guidelines. A fundamental shift reflected in the resulting ANZECC/ARMCANZ 

(2000) Guidelines was the adoption of a risk-based approach to the establishment of DGVs. The kernel 

of this risk-based approach was the SSD and in particular the use of the Burr III distribution. While the 

Burr III distribution provided for a greater variety of distributional shapes than the more commonly 

used log-logistic and log-normal distributions, this came at the expense of computational simplicity. 

Recognising that this increased complexity would severely limit the adoption and utility of the newly 

advocated approach, the Australian government commissioned CSIRO’s Division of Mathematical and 

Information Sciences (CMIS) to develop user-friendly software to perform the necessary and complex 

calculations associated with fitting Burr III distributions to toxicity data. Version 1.0 of the resulting 

software tool known as Burrlioz was made available in binary (compiled) form to coincide with the 

release of the ANZECC/ARMCANZ (2000) Guideline documents. 

1.3 Burrs under the saddle 

Overall, the ANZECC/ARMCANZ (2000) Guidelines and the companion Burrlioz tool represented a 

big step forward along the risk-based path to environmental protection in Australia and New Zealand. 

The 2000 Guidelines had no legal status, nor were they mandated for use. They were, as the name 

suggests, guidelines that reflected the best available science-based management of aquatic 

ecosystems at the time. 

Feedback from more than 20 years of use by a variety of end-users suggests that Burrlioz has been 

a demonstrable success, although reports of ‘crashes’, numerical instability issues, and failure to 

converge to a ‘solution’ started to emerge almost immediately upon release. Another growing concern 

was that the Burrlioz computer code was ‘locked away’ and only accessible to the small team of 

CSIRO statisticians who had developed it. Not only did this preclude users from readily interrogating 

the software, but it also frustrated the process of continual refinement and improvement – a hallmark 

of the open-source model. This situation was further compounded by changing structures and 

priorities within CSIRO which left Burrlioz orphaned. 

CSIRO was re-engaged by the Commonwealth government in 2014 to revise and update the 

Burrlioz software and, most notably, re-write the core statistical routines using the open-source R 

statistical computing language. Although R is extraordinarily powerful, it has a very steep learning 
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curve and, for many people, it is not an intuitive language. Burrlioz 2.0 removed the need for 

end-users to learn how to use R as it is effectively a compiled GUI that serves as a front-end to the R 

environment. Elements of the R-code used by Burrlioz 2.0 to fit SSDs can be accessed by users, 

however the Burrlioz package would not be classed as completely open-source. 

Australia and New Zealand have recognised that the ecotoxicology community would be better served 

if Burrlioz (or some incarnation of Burrlioz) was made open-source and web-based. The 

advantages of this approach have already been realised with the French web-based tool MOSAIC

(https://mosaic.univ-lyon1.fr/ssd, Charles et al. (2018)) and shinyssdtools the Canadian web-

based shiny app (https://bcgov-env.shinyapps.io/ssdtools/, Dalgarno (2021)) front end to the 

ssdtools R package (Thorley & Schwarz 2018). 

However, before proceeding down this path it was both prudent and necessary to (i) undertake a 

review of the status of SSD modelling in Australia and New Zealand; (ii) identify strengths and 

weaknesses of the Burrlioz 2.0 software; and (iii) decide on a deployment strategy for future 

software releases. To this end, a technical workshop was held from March 27–29, 2019 at the 

Australian Institute of Marine Science (AIMS) in Townsville, Queensland, to discuss key issues 

associated with the derivation of water quality guideline values (GVs). Workshop participants were 

asked to contemplate the desirability of pursuing established collaborations with Canadian scientists 

with a view to adopting or replicating their model averaging approach to GV derivations using 

ssdtools and the associated Shiny app. A comprehensive summary of the workshop deliberations 

and outcomes can be found in Fisher et al. (2019). 

1.4 Model averaging 

Many authors have noted that there is no guiding theory in ecotoxicology to justify any particular 

distributional form for the SSD other than that its domain be restricted to the positive real line 

(Newman et al. 2000, Zajdlik 2005, Chapman PF & Tarazona J 2007, Fox 2016). Indeed, (Chapman PF 

& Tarazona J 2007) described the identification of a suitable probability model as one of the most 

important and difficult choices in the use of SSDs. Compounding this lack of clarity about the functional 

form of the SSD is the omnipresent, and equally vexatious issue of small sample size, meaning that 

any plausible candidate model is unlikely to be rejected (Fox et al. 2021). The ssdtools R package 

uses a model averaging procedure to avoid the need to a-priori select a candidate distribution and 

instead uses a measure of ‘fit’ for each model to compute weights to be applied to an initial set of 

candidate distributions. The method, as applied in the SSD context is described in detail in (Fox et al. 

2021), and potentially provides a level of flexibility and parsimony that is difficult to achieve with a 

single SSD distribution. 

1.5 A shiny future for Burrlioz

There was strong support for the use of model averaging, mixture-models and web-based tools such 

as MOSAIC and ssdtools/shinyssdtools by participants at the Townsville workshop. However, 

it was acknowledged that the Canadian (shiny)ssdtools would require modification if Australia 

and New Zealand were to adopt this tool set. Features seen as desirable that are currently not 

https://mosaic.univ-lyon1.fr/ssd
https://bcgov-env.shinyapps.io/ssdtools/
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available in the ssdtools shiny application include additional ‘tabs’ – for example, an option to use 

the software in ‘research mode’ that allows users to delve deeper into (and modify) the inner workings 

of the R-code, and a separate tab for using ‘certified’ GV derivation methods, where only government-

endorsed methods are available for use. 

The Townsville workshop provided additional support and momentum for a core ‘SSD research 

development group’ (comprised of Professor David Fox, Dr Graeme Batley, Dr Rick van Dam, and Dr 

Rebecca Fisher) to progress discussions with their Canadian counterparts working with the British 

Columbia (BC) Ministry of Environment and Climate Change Strategy. Accordingly, a proposal was 

developed by this group which sought funds from the Australian Government Department of 

Agriculture, Water and the Environment (DAWE) to enable Fox to participate in a 3-day workshop in 

Victoria, BC in late November 2019. Other workshop participants included Angeline Tillmanns (BC 

Environment) and consultants Joe Thorley and Carl Schwarz. Graeme Batley, Rick van Dam, Rebecca 

Fisher and Doug Spry and Kathleen McTavish (Environment and Climate Change Canada) participated 

in a video call each day for a briefing on workshop discussions. 

Following the November 2019 workshop, the Canadian software tool developers implemented some 

of the improvements identified at the workshop while other issues remained to be addressed pending 

funding approvals and/or the need for further technical consideration. Subsequently, a work program 

was developed by the research and government collaborators to formally capture the essential and 

desirable tasks yet to be completed, which was to be used as the basis for further funding submissions. 

Additional funds were requested from DAWE (for the Australian consultants) and ECCC (for the 

Canadian consultants) to complete the essential technical work required to reach collective 

agreement between the Australian and Canadian experts that ssdtools Shiny app is robust and 

appropriate for the calculation of GVs in both jurisdictions.  

This final report provides details and results of the numerous and extensive investigations into many 

aspects of SSD modelling and the software tools Burrlioz and (shiny)ssdtools. Importantly, 

the results of comprehensive assessments of the performance of both software applications under a 

variety of data and modelling scenarios are provided in support of this report’s recommendation that 

the ssdtools R package and Shiny App be adopted for the calculation of GVs in Australia and New 

Zealand, as part of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality 

(ANZG 2018). Recommendations arising from the assessment will be considered by the 

multijurisdictional governance arrangements (i.e., the Project Coordination Group and the Water 

Quality Policy Sub-Committee). 
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1.6 Task overview and summary 

A listing of Project tasks together with a priority rating is shown in Table 1. 

Table 1. Project tasks and priority. 

The notional effort allocations assigned to each task in Table 1 (Appendix A) severely underestimated 

the actual amount of effort ultimately expended. This was a consequence of several factors. Most 

important among those were: 

 Unanticipated effort associated with collating actual datasets and developing an R package 

(ssddata). 

 Unanticipated effort associated with assisting with the development of a TMB version of 

ssdtools. 

 Unanticipated effort associated with accessing and adapting the Burrlioz code to run 

entirely within the R environment. 

 Additional effort associated with the exploration of numerous ‘side-issues’. 

 Underestimation of the time spent on individual tasks such as the exploration of the default 

distribution set and the generation of synthetic datasets for software evaluation. 
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2 DISTRIBUTION FITTING 

2.1 Numerical instability of the Burr III

The Burr III family of distributions represents the foundation of the Burrlioz software, with the 

probability distribution function (pdf) given by: 

 

1
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1

c

X kc

b
bck

x
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



 
 
  

  
  
   

(6) 

The genesis of its adoption in Australia and New Zealand was detailed in section 1.2. Briefly, the Burr 

distribution was chosen because: (a) it covered a wide range of distributional shapes; (b) the widely 

used log-logistic distribution is a member of the Burr family; and (c) it has a closed-form expression 

for quantile determination. Figure 2 shows a Cullen and Frey (1999) plot which is a convenient way of 

representing the range of shapes associated with theoretical distributions via their skewness and 

kurtosis parameter values. The wide range of shapes admitted by the Burr family is clear from this plot 

as is the propensity for empirical benchmark distributions from ssddata (Section 2.4) to aggregate 

along the skewness-kurtosis contour for Burr III distributions having a k parameter value of 0.01. This 

latter point is picked up again in Section 4.4.3. 

Over the years, users have periodically encountered numerical stability issues with the Burrlioz

software. Indeed, our own preliminary investigations showed that ssdtools often failed to converge 

to a unique solution when the Burr III was included in the candidate distribution set. Initially this was 

thought to be a consequence of the very small sample sizes used in ecotoxicology. The Burrlioz

software has several logical tests to help circumvent or ‘trap’ situations that would otherwise result 

in non-convergence.  

It is well known (e.g., Tadikamalla (1980)) that the Burr III distribution is related to several other 

theoretical distributions. These include the Lomax distribution, the compound Weibull, the Weibull-

exponential, the logistic, the log-logistic, the Weibull, and the Kappa family of distributions. Some of 

these relationships only exist as limiting cases of the Burr III, i.e., as one or more of the Burr III 

parameters approaches either zero or infinity. The Burrlioz software incorporates logic that aims 

to identify situations where parameter estimates are trying to converge to either very large or very 

small values. In such cases, fitting a Burr III distribution is abandoned and one of the limiting 

distributions is fitted instead. In addition to describing these rules, the following advice provided in 

the Burrlioz documentation also reveals the conditions under which the inverse Weibull and 

inverse Pareto distributions are fitted: 



11 

The 3 parameters of the Burr III distribution, b, c, and k are estimated by maximising the 
log-likelihood function (which is based on the probability distribution function). This 
maximisation is performed using the simplex algorithm, an optimisation technique that is 
not reliant on derivative information. A complication of the Burr III distribution is that, at 
limits of some of the parameters, the Burr III distribution tends to a limiting distribution. As 
k tends to infinity the Burr III distribution tends to the reciprocal Weibull distribution. As c 
tends to infinity the Burr III distribution tends to the reciprocal Pareto distribution. In 
practical terms, if the Burr III distribution is fitted and k is estimated to be greater than 100, 

the estimation procedure is carried out again with a reciprocal Weibull distribution fitted. 
Similarly for the reciprocal Pareto distribution, if c is greater than 80. This is necessary to 
ensure numerical stability and does not have significant impacts on the results. 

Figure 2. Plot of kurtosis versus skewness for a variety of theoretical probability distributions with empirical 

values for selected datasets from ssddata (see 2.4 Benchmark datasets). 

Our investigations into stability and non-convergence issues with the Burr III distribution suggest that 

this is a consequence of one or more of the following situations: (i) a flat-likelihood profile; (ii) highly 

correlated parameter estimates (particularly for the b and k parameters); and/or (iii) a tendency for 

successive iterations of estimates of the c and k parameters to diverge whereby, simultaneously

c  and 0k  . The last of these leads to difficulties with evaluation of the likelihood function 

which involves computations of the type 1

kc
b

x

  
  
   

. Theoretically, the limiting value of this 

expression as c  and 0k  is either 1 for b x  ; 2 for b x ; and   for b x . So, in the first 
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two cases even though the theoretical limit is a small number, in practice the computations are done 

sequentially i.e., resulting in a very large number 1
c

b

x

  
  
   

being raised to a very small power. 

Kleiber and Kotz (2003) suggested that the numerical stability of the maximum likelihood estimation 

(MLE) algorithm in the case of Burr III and related distributions is also sensitive to extreme values 

and/or outliers in the sample data. This is a common characteristic of ecotoxicological datasets. 

The cumulative distribution function (cdf) for the Burr III distribution is given by Equation 2. 
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As noted by Shao (2000), 1 1
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which is, in effect, a function of only two parameters ,c where ab  . In other words, under the 

conditions described,  , ,a b c are not all estimable and hence a unique MLE does not exist.  

In Section 3.2 we derive mathematical expressions for the standard errors and covariances for the 

Burr III MLEs as well as for an HCx estimated from the fitted distribution and these can be used with 

empirical data to demonstrate the high degree of correlation between estimates of b and k. 

2.2 Numerical properties of the inverse Pareto distribution 

As noted in Section 2.1, one of the limiting forms of the Burr III distribution is the inverse Pareto

distribution. The inverse Pareto distribution is somewhat unusual in that its theoretical moments 

(mean, variance, skewness, kurtosis, etc.) do not necessarily exist. This gives rise to the paradoxical 

situation whereby sample moments can be computed but they have no connection to the parent 

distribution. A further complication with the inverse Pareto distribution is that there are two distinct 

versions of its mathematical description – variously referred to as the ‘American’ and ‘European’ 

representations. The difference is important, not least because the support for each is different (i.e., 

the range of ‘permissible’ values), as are the MLEs. The probability density function (pdf) and cdf for 

the two versions of the inverse Pareto distribution are given by the equations below. 

‘American’ representation: 

  1 1; , ;   0 ;   , 0Xf x x x 
        (3a) 

    1; , ;   0 ;   , 0XF x x x


        (3b) 
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‘European’ representation: 
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While there is no closed-form solution for the MLEs for a and b in European version of the inverse 

Pareto distribution (Equation 4a), a closed-form solution for the American representation does exist 

(Equations 5a and 5b) although Burrlioz (somewhat inefficiently) uses numerical optimisation 

procedures instead to determine the MLEs for and  .  

1

ˆ ln
ˆ
Xg





  

   
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(5a) 

 
1ˆ

max iX
   (5b)

where Xg is the geometric mean of the X-data. 

As it currently stands, Burrlioz only fits an inverse Pareto distribution when the iterative-fitting 

process for a Burr III indicates that 0 and k c   in Equation 1 in such a way that the product

kc  is constant. Under these conditions it can be shown that the inverse Pareto distribution given 

by Equation 3b with
1

 and kc
b

    is the limiting form of the Burr III distribution given by Equation 

1 and as such no decision is required as to whether to fit the American or European version of the 

inverse Pareto distribution. However, if the inverse Pareto distribution was to be offered as one of the 

candidate distributions selected by the user, then further testing and analysis would be required. This 

is because the differences between the two versions of the inverse Pareto distribution have important 

practical implications. Although both are inverse Pareto distributions, the pdfs given by Equations 3a 

and 4a are fundamentally different: one is bounded, the other is not. For a given dataset we will not 

know which of these is the ‘true’ underlying distribution and one cannot arbitrarily choose between 

the two. To see this, consider the following data: 

1.21  0.66  1.40 107.49  1.23  0.49  1.51  2.51  2.49  3.10  1.06  3.65  0.54  3.37  1.14  0.67 

1.38  1.66  6.65 30.48  0.4716.31   0.46   0.44   1.62   0.42   2.10   5.28   1.25   0.48  14.17   0.63 

Burrlioz fits an inverse Pareto to these data with parameter estimates ˆ 0.3407  and ˆ 0.0328 

on the assumption the data follow the distribution given by Equation (3a) whereas the MLEs for this 

distribution (Equations 5a and 5b) are ˆ 0.189  and ˆ 0.0093  . Either way, it is evident that the 

American version of the inverse Pareto distribution provides a poor fit to these data while the 

European version provides a reasonably good fit (Figure 3). The difference in the quantile estimates 

is, not surprisingly, very pronounced (Table 2). 



Figure 3. Empirical cdf (black line) and fitted American inverse Pareto using Burrlioz parameter estimates 

(red line); fitted American inverse Pareto with correct MLEs (purple line); and fitted European inverse Pareto

with MLEs (blue line). 

Table 2. Comparison of quantiles from inverse Pareto distributions. 

Inverse Pareto 
Distribution 

Quantile 

0.01 0.05 0.1 0.2 0.95 0.99 

US(Burrlioz) 0.000 0.005 0.035 0.271 26.227 29.602 

US(MLE) 0.000 0.000 0.001 0.022 81.945 101.924 

European(MLE) 0.233 0.358 0.466 0.667 20.936 106.848 

Empirical 0.425 0.452 0.467 0.555 22.685 105.103 

Again, although no general conclusions can be drawn from this example, it nevertheless provides an 

example of the failure of Burrlioz to correctly estimate the parameters of the (American) inverse 

Pareto distribution as well as demonstrating the care that needs to be exercised in identifying the 

‘correct’ version of the inverse Pareto distribution if it is to be used as a candidate distribution for SSD 

modelling. 

Recommendation: corrections to Burrlioz 2.0 
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Suggestion for further investigation: inverse Pareto distributions 
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lts of supplementary investigations into various computational aspects associated with 

e inverse Pareto distribution are provided in Appendix B. 

1 Unbiased parameter estimation for the inverse Pareto distribution 

 likelihood estimation (MLE) is the adopted estimation strategy in both Burrlioz and 

s and while the MLEs have several desirable statistical properties, they are not guaranteed 

iased. The property of unbiasedness is a ‘first-order’ consideration in statistical estimation – 

ns invariably narrow their search for ‘optimal’ estimators (i.e., functions of the data) among 

 of unbiased functions of the data. Simply put, this means that, in repeated sampling, the 

r neither consistently over nor underestimates the true parameter value.  

al investigations were undertaken to examine the bias properties of the MLEs for the inverse 

istribution.  

 in Appendix C that the MLEs obtained using Equations 5a and 5b are biased estimators for 

ctive parameters although the modified estimators * *ˆˆ ;  are unbiased: 
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and ̂ are given by Equations 5a and 5b respectively.  

2 HCx estimates from the inverse Pareto distribution 

tion of the pth percentile for an inverse Pareto is particularly easy in view of its cdf having a 

rm expression. The computational formulae for both the European and US representations 

 by Equations 7a and 7b respectively. 



 
1

1 ˆ

ˆ

1
p

a
p

b
 



(7a) 


1

ˆ
1
ˆp p


 (7b) 

rrlioz program (see Replicating Burrlioz 2.0 in R for simulation studies) program can 

o fit an inverse Pareto distribution to a set of data  1, , ny y… with the command: 
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> y.fit <- RBurrlioz::fit(dataframe = y,ldensity = inverse.Pareto.density) 

And the HCx estimated using: 
> RBurrlioz::fit(y.fit,p=x) 

This will yield correct estimates of the HCx provided the y-data follow the inverse Pareto distribution 

whose pdf is given by Equation 4a. If the y-data come from an inverse Pareto distribution having pdf

given by Equation 3a, these HCx estimates will be grossly in error. However, Burrlioz can still be 

used to derive correct HCx estimates after a suitable transformation of the data. The procedure is as 

follows: 

Step 1:  Convert the y-data 1, , ny y… to z-data 1, , nz z… using: 

1 i
i

i

y
z

b y b

 
  

 

where b is the scale parameter in Equation 3a. 

Step 2: Use RBurrlioz to fit the inverse Pareto to the z-data and compute the xth percentile: 

> z.fit <- RBurrlioz::fit(dataframe = z,ldensity = inverse.Pareto.density) 

> hc.z <- RBurrlioz::fit(z.fit,p=x) 

Step 3:  Obtain the xth percentile for the Y-data as: 

> hc.y <- b^2/(1/hc.z-b)
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2.2.3 Bootstrap alternative for HCx confidence intervals from the inverse Pareto

distribution 

It is shown in Appendix B that
1

ˆ
ˆ




   has a  ,gamma r  distribution and the quantity  ˆ ln  

has a negative exponential   distribution where n  ; 1r n  ; and  ˆ ˆln   . 

Furthermore,̂   and ̂  are statistically independent. These results can be used as a quick, 

alternative means of providing interval estimates for an HCx for inverse Pareto distributed data. In R, 

this is achieved with the following simple function: 

Example 

Consider the following data generated using ssdtools with shape = 1.2 and scale = 5.4: 
2.309 2.897 0.564 0.455 4.746 2.390 3.437 1.013 4.027 3.858 4.228 3.215 

The true HC1, 5, 10, and 20 values are:  0.143,  0.487,  0.825,  1.397 . The shape and scale 

parameter estimates from Burrlioz are:  ˆˆ 1.316; 0.2107   and from ssdtools are: 

 ˆˆ 1.2117; 5.0668   . NB: There is an inverse relationship between the scale estimates from 

Burrlioz and the original implmenetation in ssdtools, although this is now aligned in the most 

recent version.

A comparison of point and interval estimates obtained using the procedure outlined in this Section 

and ssdtools is provided in Table 3. 

hc.ip <- function(N,n,shape.est,scale.est) {  

  #  N is the number of simulated {shape,scale} parameters for the CI 

estimation;  

  #  n is the size of the sample from whch the shape.est and scale.est 

parameter estimates were obtained 

  p <- list(0.01,0.05,0.1,0.2) 

  r <- n-1 ; l <- n * shape.est 

  a <- rgamma(N,r,l) 

  b <- rexp(N,l) + log(scale.est) 

  hc.dat <- lapply(p,function(x) (x^a)/exp(b)) 

  hc.est <- unlist(lapply(hc.dat,median)) 

  hc.se <-  unlist(lapply(hc.dat,sd)) 

  hc.lwr <- unlist(lapply(hc.dat,function(y) quantile(y,0.025))) 

  hc.upr <- unlist(lapply(hc.dat,function(y) quantile(y,0.975))) 

  hc.out <- data.frame(est=hc.est,se=hc.se,lcl=hc.lwr,ucl=hc.upr) 

  rownames(hc.out) <- c("HC1","HC5","HC10","HC20") 

  return(round(hc.out,4)) 

} 

Box 1. R code for rapid computation of HCx confidence intervals from the inverse Pareto distribution
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Table 3. Comparison point and interval estimates (lower (LCL) and upper (UCL) 95% confidence limits) for 1, 

5, 10 and 20 HC values using bootstrapping (parametric and non-parametric) in ssdtools and the method 

outlined in this Section. All calculations based on n=10,000. Note that in all cases the true HC was captured by 

the CI. 

HC Actual Estimate LCL UCL 
Width of 

ci 
Method 

1 0.143 

0.113 0.247 0.016 0.938 0.92 non-parametric 

0.113 0.193 0.010 0.717 0.71 parametric 

0.196 0.231 0.020 0.878 0.86 this report 

5 0.487 

0.428 0.400 0.117 1.640 1.52 non-parametric 

0.428 0.350 0.090 1.410 1.32 parametric 

0.584 0.376 0.133 1.561 1.43 this report 

10 0.825 

0.758 0.473 0.277 2.090 1.81 non-parametric 

0.758 0.436 0.229 1.880 1.65 parametric 

0.933 0.445 0.296 1.999 1.70 this report 

20 1.397 

1.340 0.522 0.657 2.670 2.01 non-parametric 

1.340 0.507 0.589 2.520 1.93 parametric 

1.497 0.491 0.666 2.555 1.89 this report 

A somewhat more comprehensive simulation was undertaken to investigate the efficiency of the 

proposed methodology. To this end, 1,000 datasets of various sample sizes were generated from an 

inverse Pareto distribution with parameters 0.5989  and 0.2631  . The theoretical cdf for this 

particular distribution is shown in Figure 4. 

Figure 4. The theoretical cdf for the inverse Pareto distribution with parameters α = 0.5989 and β = 0.2631. 

An inverse Pareto distribution was fitted to each of the 1,000 datasets and 1,000 non-parametric 

bootstrap samples used to obtain estimated 95% confidence limits. A logical variable was created to 

indicate whether or not the true HC value had been captured by the 95% confidence interval. The 

proportion of cases for which this logical variable was true provided a measure of the actual 

coverage associated with the nominal 95% CI. The results from the Burrlioz fit were compared to 

those obtained using the ‘new’ procedure given in Box 1.  
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In terms of coverage, both Burrlioz and our new procedure gave almost identical results and were 

all very close to the nominal 95% level (Table 4). 

Table 4. Actual coverage estimates for Burrlioz and compared to the new method based on 

1000 simulated datasets of n=100 from the theoretical inverse Pareto distribution (Figure 4). 

Values are the proportion of simulated outcomes where the true value falls within the estimated 

95% confidence interval. 

Method 

Burrlioz New methods of this Section 

HC1 0.950 0.949 

HC5 0.953 0.953 

H10 0.956 0.951 

HC20 0.961 0.954 

Figure 5. Boxplots of HC errors for estimates obtained using Burrlioz and new method of this Section for 

1000 samples of size n=100 sampled from the theoretical inverse Pareto distribution in Figure 4. HC error is 

calculated as the difference between the estimated HCx and the theoretical HCx. 



Figure 6. Boxplots of HC 95% CI widths using Burrlioz and new method of this Section for 1000 samples 

of size n=100 sampled from the theoretical inverse Pareto distribution in Figure 4. 

Based on this limited analysis, it would appear that the procedure outlined in this Section performs as 

well as the bootstrapping methods. It yields confidence intervals that achieve the same result but in a 

fraction of the time taken for bootstrapping (typically 700 to 1,000 times faster) and has interval 

widths which are between non-parametric and parametric bootstrapped intervals. However, further 

testing and evaluation would be required before the procedure is considered for inclusion in any 

software tools. 

Suggestion for further investigation: unbiased HCx estimation for the inverse Pareto
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int and interval estimates of HCx values in the inverse Pareto case. 
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dtools code optimisation, convergence criteria and software 

hancements 

tate the research program, several modifications and enhancements were made to 

s. In particular, the fitdistrplus package (Delignette-Muller & Dutang 2015) was 

 by TMB (Kristensen et al. 2016) for model fitting to allow more control over model 

tion and transparency regarding convergence criteria. This in turn allowed us to better assess 

l instability issues with the Burr III distribution and to readily implement two mixture 

ons (log-normal-log-normal and log-logisitic log-logistic). It also facilitated implementation 

verse Pareto distribution and development of a function to mimic Burrlioz. Confidence 

estimation was facilitated by recording the proportion of bootstrap samples that were 

lly fitted to the generative distribution and by adding the option to perform non-parametric 

p resampling (as is implemented in Burrlioz). Other functionality of note is the ability to 

ically rescale data (by dividing by the maximum value) to aid model fitting while returning HCx 
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and CI values that are automatically adjusted for the rescaling. A comprehensive list of additions and 

modifications is provided in Table 5 below. 

Table 5. List of additions and modifications to ssdtools 

Item Outcome 

Model fitting fitdisrplus has been replaced with TMB in the refactored code. This has improved 

handling of censored data and allows greater flexibility for defining constraints on 
parameters. 

Convergence 
criteria 

In addition to requiring the optim function to converge, the following two additional 
arguments have been added: 
1. Bounded parameters are not at boundary (logical) 

2. Standard errors for parameter estimates are computable (logical) 

Data censoring Increased flexibility of specifying censored data by: 

1. Having a finite value for the left column that is smaller than the finite value in the right 
column (interval censored) 
2. Having a zero or missing value for the left column and a finite value for the right column 
(left censored) 
3. Confidence intervals cannot be estimated for interval censored data. 

Akaike weights 
for model 
averaging with 
censored data 

 Akaike Weights are calculated using AIC for censored data (as the sample size cannot be 
estimated) but only if all the distributions have the same number of parameters (to ensure 
the weights are valid) 

Distributions 1. Density functions are now defined in C++ as TMB templates (previously, they were 
exported as R functions to make them accessible to fitdistrplus). The distribution, 

quantile and random generation functions are more generally useful and are still exported 
but are now prefixed by `ssd_` to prevent clashes with existing functions in other packages. 
Thus for example `plnorm()`, `qlnorm()` and `rlnorm()` have been renamed `ssd_plnorm()`, 
`ssd_qlnorm()` and `ssd_rlnorm()` 
2. The following distributions were added (or in the case of `Burr III` re-added) to the new 
version 
 - `burrIII3` - Burr III three parameter distribution 
 - `invpareto` - inverse Pareto (with bias correction in scale order statistic) 
 - `lnorm_lnorm` log-normal/log-normal mixture distribution 
 - `llogis_llogis` log-logistic/log-logistic mixture distribution 
3. The following arguments were added to `ssd_fit_dists()` 
 - `rescale` (default set to `FALSE`) to specify whether to rescale concentrations values by 
dividing by the largest (finite) value. This alters the parameter estimates, which can help 
some distributions converge, but not the estimates of the hazard 
concentrations/protections. This is akin to converting units between Imperial and metric 
units and so is mathematically equivalent to the unscaled distribution. 
 - `reweight` (default set to `FALSE`) to specify whether to reweight data points by dividing by 
the largest weight. 
 - `at_boundary_ok` (default set to `FALSE`) to specifying whether a distribution with one or 
more parameters at a boundary is considered to have converged. 
 - `min_pmix` (default set to 0.01) to specify the boundary for the minimum proportion for a 
mixture distribution. 
 - `range_shape1` (default set to `c(0.05, 20)`) to specify the lower and upper boundaries for 
the shape1 parameter of the Burr III distribution. 
 - `range_shape2` (default set to the same as `range_shape2`) to specify the lower and upper 
boundaries for the shape2 parameter of the Burr III distribution. 
 - `control` (default set to an empty list) to pass a list of control parameters to 
`stats::optim()`. 
4. the default value of  
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Item Outcome 

 - `computable` argument was switched from `FALSE` to `TRUE` to enforce stricter 
requirements on convergence (see above). 

Subsets of 
distributions 

1. Functions were added to handle multiple distributions, including: 
- `ssd_dists()` to specify subsets of the available distributions (using its `type` argument). 
- `delta` argument (default set to 7 based on (Burnham & Anderson 2002)) to the `subset()` 
generic to only keep those distributions within the specified AIC(c) difference of the best 
supported distribution. This was done to save computation time in calculation of HCx 
bootstrap confidence values by avoiding the need to bootstrap distributions of very low 
weight. 
2. The function `ssd_fit_burrlioz()` was added to approximate the behaviour of 
[Burrlioz](https://research.csiro.au/software/burrlioz/). 

Hazard 
concentration/
protection 
estimation 

Hazard concentration estimation is performed by `ssd_hc()` (which is wrapped by `predict()`) 
and hazard protection estimation by `ssd_hp()`. By default, confidence intervals are 
estimated by parametric bootstrapping.  
To reduce the time required for bootstrapping, parallelization was implemented using the 
[future](https://github.com/HenrikBengtsson/future) package. The following arguments 
were added to `ssd_hc()` and `ssd_hp()`: 
- `delta` (by default 7) to only keep those distributions within the specified AIC difference of 
the best supported distribution.   
- `min_pboot` (by default 0.99) to specify minimum proportion of bootstrap samples that 
must successfully fit.   
- `parametric` (by default `TRUE`) to allow non-parametric bootstrapping.   
- `control` (by default an empty list) to pass a list of control parameters to `stats::optim()`.  
The following columns were added to the output data frame: 
- `wt` to specify the Akaike weight.   
- `nboot` to indicate how many bootstrap samples were used.    
- `method` to indicate whether parametric or non-parametric bootstrap was used.  

Goodness of fit The `pvalue` argument (by default `FALSE`) was added to `ssd_gof()` to specify whether to 
return p-values for the test statistics as opposed to the test statistics themselves. 

Plotting  - `ssd_plot_data()` to plot censored and uncensored data by calling `geom_ssdpoint()` for 
the left and for the right column (alpha parameter values should be adjusted accordingly).  - 
`geom_ssdsegment()` to allow plotting of the range of a censored data points using 
segments.  - `scale_colour_ssd()` (and `scale_color_ssd()`) to provide an 8 color-blind scale. 
 - added `bounds` (by default `c(left = 1, right = 1)`) argument specify how many orders of 
magnitude to extend the plot beyond the minimum and maximum (non-missing) values. 

 - added `linetype` (by default `NULL`) argument to specify line type. 

 - added `linecolor` (by default `NULL`) argument to specify line color. 

 - changed default value of `ylab` from "Percent of Species Affected" to "Species Affected". 

Renamed  

 - `GeomSsd` to `GeomSsdpoint`. 

 - `StatSsd` to `StatSsdpoint` 

Soft-deprecated 

 - `geom_ssd()` for `geom_ssdpoint()`. 

 - `stat_ssd()`. 

 - `ssd_plot_cf()` for `fitdistrplus::descdist()`. 

Data 1. The dataset `boron_data` was renamed `ccme_boron` and moved to the 
[`ssddata`](https://github.com/open-AIMS/ssddata) R package together with the other 
CCME datasets. 
The `ssddata` package provides a suite of datasets for testing and comparing SSD fitting 
software. 
2. Some data handling functions have been added: 

- `ssd_data()` to return original data for a `fitdists` object. 
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Item Outcome 

- `ssd_ecd_data()` to get empirical cumulative density for data. 

- `ssd_sort_data()` to sort data by empirical cumulative density. 

Miscellaneous - `npars()` now orders by distribution name. 

- All functions and arguments that were soft-deprecated prior to v0.3.0 now warn 
unconditionally. 
- Implemented the following generics for `fitdists` objects 

  - `glance()` to get the model likelihoods, information-theoretic criteria etc. 

  - `augment()` to return original dataset. 

  - `logLik()` to return the log-likelihood. 

   - `summary.fitdists()` to summarize. 

2.4 Benchmark datasets  

A key deliverable of this project was to identify a suite of benchmark datasets that will serve as a 

reference standard for SSD-fitting and evaluation. This is in keeping with the recommendation by Fox 

et al. (2021) and is useful for testing packages during development and evaluating the outcome of 

altering the fitting methodologies. Such data can be used not only in testing and evaluation, but more 

particularly to identify if any software updates have a measurable impact on the expected outputs. In 

addition, real case studies of SSDs for which Burrlioz 2.0 results are available can be used to 

evaluate differences among fitting methods relative to the current Water Quality Guideline 

methodology (although rigorous testing of method outcomes must also be done using simulated data 

for which true values are known because this allows assessment of bias and coverage, see Section 

2.5.2 below), which cannot be achieved with real datasets. 

We have built ssddata (Fisher & Thorley 2021) as a standalone R package to house the set of 

benchmark datasets, with the intent of becoming a package dependency to ssdtools and other 

related packages. The new package is housed on github at https://github.com/open-aims/ssddata and 

is published on CRAN at https://CRAN.R-project.org/package=ssddata. The package includes a range 

of datasets sourced from the Canadian Council of Ministers of the Environment (CCME), the Australian 

Institute of Marine Science (AIMS), the Commonwealth Scientific and Industrial Research Organisation 

(CSIRO), and the Australian and New Zealand water quality guidelines website (ANZG), as well as 

anonymous datasets supplied by DAWE and other parties. The source of each dataset is indicated 

using a lower-case pre-fix in the data name (e.g., ccme, aims, etc), with the chemical name following 

(e.g., ccme_boron). 

During development, substantial R code was written to provide a workflow that allowed efficient 

documentation of the individual datasets within the R package environment, thus making it possible 

to add additional datasets with minimal effort. The package documentation is hosted on the GitHub 

site at (https://open-aims.github.io/ssddata/), which shows instructions for package installation on 

the home page, and documentation for all the constituent datasets on the Reference page. The 

package is now published on CRAN, so can be included as a dependency to ssdtools. Please see the 

relevant Reference pages for the CCME, AIMS, CSIRO, ANZG and anonymous datasets for more details 

on each of the individual datasets available. 

https://github.com/open-aims/ssddata
https://open-aims.github.io/ssddata/
https://open-aims.github.io/ssddata/reference/ccme_data.html
https://open-aims.github.io/ssddata/reference/aims_data.html
https://open-aims.github.io/ssddata/reference/csiro_data.html
https://open-aims.github.io/ssddata/reference/anzg_data.html
https://open-aims.github.io/ssddata/reference/anon_data.html
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Included in this data package is a dataset containing various software fits to these data that can be 

used for comparison purposes (see https://open-aims.github.io/ssddata/reference/ssd_fits.html), 

that includes HC estimates for data contained within the package. These fits were obtained either as 

an entire dataset for a given chemical from a data source (e.g., ccme_boron) using a geometric mean 

where a dataset contains multiple species, or based on a subset using some kind of filter. We created 

a helper function get_ssddata that can be used to generate the geometric mean, given the 

dataset_name and a filter_val. Most commonly this filter was applied to subset data into either a 

tropical or temperate Domain. As an example, the aims_aluminium_marine dataset contains 

replicate measurements for some species, as there were data for both Temperate and Tropical 

subsets, thus for an overall SSD their geometric mean must be computed and a single value included 

in the final SSD to replicate the results (van Dam et al. 2018). Likewise, the source of this same dataset 

also provides SSD results from Burrlioz 2.0 that were computed using just the tropical and 

temperate data, and both are included in the collated ssd_fits dataset. 

At present, the ssddata package contains estimates for 249 dataset/filter/PC combinations across 

20 unique datasets, fitted using either Burrlioz 2.0, or the fitdistrplus-based version of 

ssdtools (version 0.3.4) using the default distribution set of log-logistic, log-normal and gamma. 

Many of these estimates include both the Burrlioz 2.0 or ssdtools estimates, as well as the 

lower and upper 95% confidence bounds based on bootstrapping. 

2.5 Evaluating SSD methodologies 

In this Section we fully explore, evaluate, and compare the Australian/New Zealand and the Canadian-

BC SSD methodologies. This includes comparing the estimated outcomes of different methodologies 

based on benchmark datasets, as well as the accuracy and precision of HCx estimation using simulated 

data. Methods to compare include: 

1. BurrliOz (the currently adopted method in Australia/New Zealand) 

2. Model averaging using ssdtools (TMB-based) with the three current default distributions 

(log-logistic, log-normal and gamma; the currently adopted Canadian BC approach) 

3. Model averaging using ssdtools (TMB-based) using different suites of possible distributions, 

including the three already adopted (log-logistic, log-normal and gamma), those currently 

used in BurrliOz (Burr III, inverse Weibull [named lgumbel in ssdtools], and inverse 

pareto), as well as the other two available in ssdtools (i.e.,gompertz and Weibull). 

4. Model averaging using ssdtools (TMB-based) using all the above distributions as well as 

two mixture distributions (llogis_llogis, and lnorm_lnorm). 

5. Model averaging using the current CRAN release version of ssdtools (based on 

fitdistrplus) with the three current default distributions (log-logistic, log-normal and 

gamma; the currently adopted Canadian BC approach). 

6. An ssdtools (TMB-based) implementation of the Burrlioz 2.0 fitting framework, using 

the ssd_fit_burrlioz() function. 

These comparisons were performed across the common levels of species protection (i.e., 80, 90, 95 

and 99% protection) and the influence of sample size on the performance and outcome of different 

methods was also investigated in the case of simulated datasets (see below). 

https://open-aims.github.io/ssddata/reference/ssd_fits.html
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2.5.1 Benchmark datasets 

We used the ssd_fit dataset containing actual Burrlioz estimates of HC, to compare HC 

estimates between Burrlioz 2.0 and the current CRAN version of ssdtools, using a model 

average of the current default distribution set from the BC Environment [shiny app] (https://bcgov-

env.shinyapps.io/ssdtools/ log-logistic, gamma and log-norm). This version of ssdtools uses the R 

package fitdistrplus R package for fitting the individual distributions to the data, with model 

weights based on AICc. 

2.5.1.1 Burrlioz 2.0 versus ssdtools (fitdistrplus-based - default distributions) 

Overall, there was very good agreement in the estimates among the two methods for the PC80/HC20 

and PC90/HC10, with variation increasing for the smaller species protection values (95% and 99%, 

Figure 7). Estimates of the upper 95% confidence bands were relatively similar, but estimates for the 

lower bound varied widely, particularly for the two smaller protection values (Figure 7). Overall, there 

was little deviation from the 1:1 line for the two methods, indicating that the estimates from the two 

methods were on average very similar (Figure 7). 
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Figure 7. HC values estimated using the original fitdistrplus version of ssdtools with the default 

distribution set of log-logistic, log-normal and gamma, plotted against Burrlioz 2.0. Plot columns show 

comparisons for 80th, 90th, 95th and 99th protection values (equivalent to HC20, HC10, HC5 and HC1) and plot 

rows are the actual estimate, as well as the lower and upper confidence bounds. Points with the left half 

missing have an x value of 0. 

https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
https://bcgov-env.shinyapps.io/ssdtools/
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2.5.1.2 ssdtools (fitdisrplus) versus ssdtools (TMB) 

We also used the datasets in the ssddata R package to compare the original version of ssdtools

based on fitdistrplus and the development version of ssdtools based on TMB. For these 

datasets, there is complete agreement among the two packages in terms of the estimate, as well as 

the confidence bands (Figure 8), and no further comparisons were done between these two platforms. 
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Figure 8. HC values estimated using the original fitdistrplus version of ssdtools with the default 

distribution set of log-logistic, log-normal and gamma, plotted against the new version of ssdtools based 

on TMB using the same distributions. Plot columns show comparisons for 80th, 90th, 95th and 99th protection 

values (equivalent to HC20, HC10, HC5 and HC1) and plot rows are the actual estimates, as well as the lower 

and upper confidence bounds. 

2.5.1.3 Comparing the default distributions to all distributions in ssdtools

The development version of ssdtools contains a large range of distributions, including the Burr III

(burrIII3), gamma, Gompertz (gompertz), inverse Pareto (invpareto), inverse Weibull (or log-Gumbel, 

lgumbel), log-logistic (llogis), Weibull (weibull), and log-logistic (llogis_llogis) and log-normal

(lnorm_lnorm) mixtures. We compared estimates based on the current default set (log-logistic, log-

normal and gamma), to estimates based on all distributions and observed overall good agreement, 

particularly for the 80th and 90th PC values (Figure 9). There was a tendency for estimates based on the 

‘all’ set to show slightly higher PC values than the default distribution set for some datasets (Figure 9). 

This suggests that the choice of distributions in the set will have an impact on HC estimates and should 

be carefully considered using simulations studies (see Section 2.5.2). 
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Figure 9. HC values estimated using the default distribution set of log-logistic, log-normal and gamma, plotted 

against the estimate based on all distributions available in the newest version of ssdtools. Plot columns 

show comparisons for 80th, 90th, 95th and 99th protection values (equivalent to HC20, HC10, HC5 and HC1) and 

plot rows are the actual estimate, as well as the lower and upper confidence bounds. 

2.5.1.4 The ssd_fit_burrlioz function in ssdtools

The development version of ssdtools (TMB-based) includes an ssd_fit_burrlioz() function 

that is designed to mimic the analytical framework of Burrlioz 2.0, but using the ssdtools

package (and therefore TMB for distribution estimation). We compared how well this tool performs 

in replicating the existing Burrlioz 2.0 estimates using the benchmark datasets. Overall, we found 

very good agreement between the two methods; however, there are a few large outliers, suggesting 

the ssd_fit_burrlioz() function cannot be used to generate PC estimates as a direct 

replacement to Burrlioz 2.0 (Figure 10). Without further, more detailed testing, we cannot say 

what is responsible for this situation, although we suspect that it may be a consequence of a very flat 

likelihood and that the two algorithms have converged to different, but equally good, solutions. 

Suggestion for further investigation: Burrlioz 2.0 comparisons

Un

an

es
dertake more detailed investigations to compare the performance of Burrlioz 2.0

d the ssd_fit_burrlioz function in ssdtools. Focussing on instances where HCx 

timates are substantially different, determine reasons for this discrepancy. 
27 
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Figure 10. HC values estimated using ssd_fit_burrlioz plotted against Burrlioz 2.0 estimates. Plot 

columns show comparisons for 80th, 90th, 95th and 99th protection values (equivalent to HC20, HC10, HC5 and 

HC1) and plot rows are the actual estimate, as well as the lower and upper confidence bounds. Points with 

the left half missing have an x value of 0. 

2.5.2 Simulated datasets 

Simulated datasets are an essential tool for evaluating alternative methods for estimating statistical 

distributions because they allow a comparison of the estimated HC values against known true values, 

which cannot be done using observed SSD datasets, such as those in the ssddata package (see 

Section 2.5.1). While the benchmark datasets can be used to compare the outcome of two fitting 

methods (as was done in Section 2.5.1), when the fits differ, there is no way to know which outcome 

is ‘correct’. By simulating data with known HC characteristics, it is possible to estimate values of bias 

(estimated HC – true HC), as well as the observed coverage of the confidence interval estimate – i.e., 

does the true HC fall within the 95% confidence interval, 95% of the time? The problem with 

implementing simulation studies to examine the performance of Burrlioz 2.0 against other 

methods are twofold: (i) the manual interface of Burrlioz 2.0 precludes it’s use in simulations, 

and (ii) the simulated data need to be generated by some underlying distribution. To address the first 

issue, we developed and validated an R only version of Burrlioz 2.0. To address the second, we 

ran simulations using two sets of distributions – the first included distributions that were contained 

within the methods being compared [Simulation Study 1 (log-normal, log-logistic, inverse Weibull)], 

and the second based on a family of distributions not included in any of the methods under 

consideration [Simulation Study 2 (Johnson family)]. These are described in more detail below. 
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Replicating Burrlioz 2.0 in R for simulation studies 

To allow the use of a Burrlioz-like method in our simulation studies, it was necessary to implement 

a version of Burrlioz that was contained entirely within the R environment and that could be called 

upon thousands of times without manual intervention. Although a standalone package, Burrlioz

is in effect a front-end to the R statistical computing environment, i.e., it interacts with the user 

through a GUI to specify data sources, set preferences, and select various fitting options. This is then 

passed to the R statistical computing package which performs all the computations and returns the 

results to Burrlioz. Accordingly, the relevant mathematical functions and methods are contained 

within an .RData file that is saved in the package directory upon installation. This .RData file, along 

with the Burrlioz 2.0 user manual, was used to develop an R package that could be installed and 

run on any machine.  

Initial attempts to replicate the Burrlioz 2.0 software failed to produce sufficiently similar results 

as we did not have access to the default input values, as well as critical control parameters used by 

the optimisation algorithm. After requesting and obtaining this information from the package 

developers, we found estimates for the HC values to be very similar, with HC estimates from the two 

software packages yielding a very tight 1:1 line (Figure 11). The 95% confidence bands on the HC 

estimates also agreed closely, with a tight relationship for the Upper estimates, and only minor 

deviations on the Lower estimate for 1000 bootstrap iterations (Figure 11). Note that the fits using 

the RBurrlioz implementation are more like the actual Burrlioz 2.0 output than the 

ssdtools sdd_fit_burrlioz output (see above, Figure 10). 

Overall, it appears that the RBurrlioz implementation closely replicates the behaviour of the 

Burrlioz 2.0 software, and is suitable for use in simulation studies evaluating the performance of 

alternative methods as an approximation for the expected outcome were it possible to use Burrlioz 

2.0 directly in these simulations. 
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Figure 11. HC values estimated using RBurrlioz plotted against Burrlioz 2.0. Plot columns show 

comparisons for 80th, 90th, 95th and 99th protection values (equivalent to HC20, HC10, HC5 and HC1) and plot 

rows are the actual estimate, as well as the lower and upper confidence bounds. Values with the left and 

lower half values missing have x and y values of 0. 

2.5.3 Simulation Study 1 (log-normal, log-logistic, inverse Weibull) 

We simulated data from an expanded grid of parameters across three distributions – the log-normal, 

log-logistic and inverse Weibull (also equivalent to the log-Gumbel [lgumbel] in ssdtools). This very 

large set of synthetic data was initially screened to avoid unrealistic distributions (e.g., 'bathtub' 

shapes) and a subset was selected (1,814 in total) to cover a broad range of skewness and kurtosis 

representations (composition: 610 log-logistic; 610 log-normal; and 594 inverse Weibull) such that the 

final dataset would have relatively equal representation of the parent distributions. The data were 

further screened to exclude those with a standard deviation less than 1 or greater than 5000. This 

ensured the data were consistent with the range in standard deviations across the observed 

benchmark datasets (all had standard deviations > 1). Although some observed datasets in ssddata

have much larger standard deviations, data of that nature would generally be analysed in Burrlioz

on a log scale, which we did not implement in our simulation workflow. 

The associated meta-data, including the initial parent distribution, the original generating parameters 

and the true HC1, HC5, HC10 and HC20 estimates were collated and used in analysis of the outcome 

of the simulated data. As the fitdistrplus version of ssdtools and the TMB version ssdtools

were yielding identical results for the benchmark data, we focused our efforts instead on fitting the 

simulated data using: 
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1. The RBurrlioz implementation of Burrlioz 2.0; 

2. Model averaging using the new version of ssdtools (TMB) including only the three currently 

adopted distributions (log-normal, log-logistic and gamma); 

3. Model averaging using ssdtools (TMB) using all currently available unimodal distributions 

in ssdtools: Burr III (burrIII3), gamma, gompertz, inverse Pareto (invpareto), inverse Weibull 

(log-Gumbel, lgumbel), log-logistic (llogis), log-normal (lnorm), and Weibull, as well as two 

mixture distributions (llogis_llogis, and lnorm_lnorm); 

4. An ssdtools implementation of the Burrlioz 2.0 fitting framework using the function 

ssd_fit_burrlioz(). 

Fitted distributions were used to extract HC estimates that were compared to the true HC values to 

assess bias, as well as to examine the empirical coverage associated with the computed 95% 

confidence bounds returned by each method. Estimates were obtained across a range of samples sizes 

by subsampling from the initially generated 1,000 values for each synthetic dataset. Given the large 

number of datasets and the relatively long computation time required to estimate HC confidence 

limits using bootstrap methods, it was not possible to run multiple iterations of subsampling across 

the range of sample sizes. While we endeavoured to set a seed for this subsampling that was the same 

across all methods (so the same subsampled data was analysed for every method), this subsampling 

was not repeated iteratively, thus coverage estimates based on this first simulation study must be 

considered approximate. True coverage estimates were explored in more detail in the second 

simulation study described in more detail below. 

2.5.3.1 Checking simulation expectations based on the parent distributions 

Initially we examined bias and coverage as a function of sample size, using estimates based only on 

the individual distributions representing the parent distributions. We found that in all cases, and for 

all three parent distributions, bias is low when data are fitted using the same distribution as the parent 

distribution and shrinks to near zero as sample sizes increase (Figure 12). Where the fitted distribution 

is different to the parent distribution there is generally some bias in the estimates, and in some cases 

this bias can be quite extreme, particularly for the smallest HC values (Figure 12). For example, 

estimates obtained from a log-logistic or log-normal distributions fitted to data generated from the 

inverse Weibull distribution have a strong negative bias, although this disappears for the HC20 

estimate (Figure 12). Both the log-normal and inverse Weibull (log-Gumbel) distributions tend to 

overestimate HC1 for data generated using a log-logistic distribution (Figure 12). 
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Figure 12. Bias as measured as the log ratio of the estimated HC value against the actual known value, across 

four different species protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, 

HC10 and HC20) for data simulated from three different parent distributions (plot rows - inverse Weibull, log-

logistic and log-normal). Plots are coloured according to the fitted distribution. All fits were done using 

ssdtools (TMB). Note that the inverse.weibull (as implemented in Burrlioz 2.0) and the lgumbel 

(ssdtools) are exactly equivalent distributions. 

With respect to confidence interval width, the widest intervals were obtained when the fitted SSD is 

the log-logistic distribution, closely followed by the log-normal, with the log-Gumbel (inverse Weibull) 

having the narrowest intervals (Figure 13). This observation held true regardless of the parent 

distribution used to generate the data. 
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Figure 13. Confidence interval width of the estimated HC value against the actual known value, across four 

different species protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 

and HC20) for data simulated from three different parent distributions (plot rows - inverse Weibull, log-logistic

and log-normal). Plots are coloured according to the fitted distribution. All fits were done using ssdtools

(TMB). Note that the inverse.weibull (as implemented in Burrlioz 2.0) and the lgumbel (ssdtools) are 

equivalent distributions. 

As would be expected, estimates of coverage are close to nominal levels when the fitted SSD is a 

member of the same family as the underlying parent distribution (Figure 14). Actual coverage is less 

than the nominal 95% for small sample sizes, with rapid convergence to the 95% level for larger-sized 

samples where the fitted and parent distribution are of the same functional form (Figure 14). 

Inconsistent coverage results were obtained when the parent and fitted distributions were of different 

functional forms. Thus, we see, for example, that coverage for HC20 estimates for data generated 

from an inverse Weibull distribution were very close to the nominal 95% regardless of either the fitted 

distribution or the sample size, while for these same data, coverage for the HC1 and HC5 estimates 

showed a monotonic decline with increasing sample size when the fitted SSD was either a log-logistic

or log-normal distribution. To explain this somewhat counter-intuitive result, one needs to go back to 

the plots of bias and confidence interval width for the HC1 and HC5 estimates for data generated from 

the inverse Weibull distribution (columns 1 and 2 of the first row of Figure 12 and Figure 13 

respectively). With respect to bias, it is evident that the fitted log-logistic and log-normal SSDs yield 

severe underestimates of the true HC values and that the direction of this bias is unaffected by sample 

size.  
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On the other hand, as the sample size increases, the width of the confidence intervals consistently 

shrinks. Putting this together, we conclude that, as the sample size increases, the centres of the 

confidence intervals remain consistently to the left of the true HCx while the width of those confidence 

intervals shrinks. The net effect is that it becomes increasingly unlikely that the true HCx will be 

‘captured’ by the confidence interval. 

Figure 14. Approximate coverage estimates for a nominal 95% confidence interval across four different species 

protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 and HC20) for 

data simulated from three different parent distributions (plot rows - inverse Weibull, log-logistic and log-

normal). Plots are coloured according to the fitted distribution. All fits were done using ssdtools (TMB). 

Note that the inverse.weibull (as implemented in Burrlioz 2.0) and the lgumbel (ssdtools) are 

equivalent distributions. 

2.5.3.2 Comparing methods across parent distributions 

Overall, bias decreases as sample size increases as would be expected for all the methods considered 

(Figure 15). As discussed above, the clearest exception to this pattern occurs when the parent 

distribution used to generate the data and the fitted SSD are of different distributional forms. The 

most obvious case of this is for the model average approach using the ‘default’ set of only three 

distributions (log-logistic, log-normal and gamma, Figure 15). While the expected behaviour of 

decreasing bias with increasing sample size occurs for data generated by the log-normal or log-logistic

distributions, bias remains relatively high across samples sizes for data generated using the inverse

Weibull (Figure 15), which is not represented by this default set.  
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Figure 15. Bias as measured as the log ratio of the estimated HC value against the actual known value, across 

four different species protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, 

HC10 and HC20) for data simulated from three different parent distributions (plot rows - inverse Weibull, log-

logistic and log-normal). Plots are coloured according to the applied fitting method and includes RBurrlioz, 

the ssd_fit_burrlioz method implemented in ssdtools (TMB) using the non-paremetric bootstrap (in 

line with RBurrlioz) and two model averaged methods using ssdtools (TMB), including one using only 

the current BC three default distributions (log-logistic, log-normal and gamma, ssdtools_tmb_default) and 

one using all the available distributions (ssdtools_tmb_all). 
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The ‘all’ model average method appears to perform as well (if not better) than the RBurrlioz

method at low sample sizes and has a clear advantage over RBurrlioz at large sample sizes, with 

bias converging uniformly to zero as sample size increases for all distributions (Figure 15). 

Results for approximate coverage across these simulated data largely reflect the levels of bias 

observed across the methods (Figure 16). Coverage of the ‘all’ model average method is the best 

across all scenarios, whereas coverage of the ‘default’ model average method is extremely poor when 

the distribution used to generate the data is not one of the included default distributions (i.e.,the 

inverse Weibull/log-Gumbel, Figure 16). Coverage for the RBurrlioz and sdd_fit_burrlioz()

methods behave a bit more unpredictably across sample sizes (Figure 16), possibly as a consequence 

of complex inter-relationships with the actual fitted distribution and sample size.  

Figure 16. Approximate coverage estimates for a nominal 95% confidence interval across four different species 

protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 and HC20) for 

data simulated from three different parent distributions (plot rows - inverse Weibull, log-logistic and log-

normal). Plots are coloured according to the applied fitting method and includes RBurrlioz, the 

ssd_fit_burrlioz method implemented in ssdtools (TMB) using the non-parametric bootstrap (inline 

with RBurrlioz) and two model averaged methods using ssdtools (TMB), including one using only the 

current BC three default distributions (log-logistic, log-normal and gamma, ssdtools_tmb_default) and one 

using all of the available distributions (ssdtools_tmb_all). 
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2.5.4 Simulation Study 2 (Johnson family) 

In Simulation Study 1 of Section 2.5.3, synthetic data was generated from a range of distributions, all 

of which were members of the ‘all’ candidate model set of the model average method, and some of 

which were also available in RBurrlioz and the ‘default’ set currently used in ssdtools. Not 

surprisingly, the performance of the different SSD-fitting methods among the datasets was in part a 

consequence of the commonality of parent and fitted distributions. Due to excessive computational 

demands, it was not possible to explore the true coverage of each SSD-fitting method for each 

simulated dataset. As a work-around, we chose parameter values for members from the Johnson 

family of distributions (Johnson 1949) to mimic the distributional properties of six of the original 

benchmark datasets in ssddata identified as "anon_a", "anon_b", "ccme_boron", 

"ccme_glyphosate", "ccme_silver", and "ccme_uranium" and generated ‘parent populations’ 

of size n=1,000 for each. Using the actual datasets themselves was not an option because: (i) the true

HC values were unknown; and (ii) the sample sizes were too small to permit the construction of 

random sub-samples of a variety of sizes. A comparison of the theoretical and empirical cdfs for the 

six datasets is shown in Figure 17. 

Figure 17. Benchmark data (black circles) and generated theoretical curve based on the Johnson family of 

distributions that was used in simulation studies (solid black line). Horizontal coloured dashed lines show 

where the HC1, HC5, HC10 and HC20 values cross the theoretical curve. 
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Although the first four moments of the fitted and empirical distributions match, it is evident from 

Figure 17 that the Johnson distributions do not necessarily do a particularly good job at replicating the 

left-tail behaviour exhibited by the data. Indeed, the fitted Johnson distributions have, to varying 

degrees, no long-tail behaviour and instead of approaching the horizontal axis smoothly, they 

intercept it abruptly. It could be argued that this is unrealistic of (eco-) toxicity data and therefore our 

simulation studies do not provide a useful basis on which to make comparisons or recommendations. 

Our counterargument is that regardless of the degree of ecotoxicological realism, the distributions in 

Figure 17 provide a ‘stress-test’ in the sense that these represent challenging cases for the SSD 

modelling tools – particularly in the context of their ability to cope with ‘unknown’ distributions. 

Furthermore, the ‘handicapping’ introduced by using ‘unknown’ distributions is the same for all SSD 

modelling tools and to that extent no systematic bias has been introduced. 

A graphic illustration of the ability (or inability) of the various modelling tools to replicate the left-tail 

behaviour of the Johnson distributions of Figure 17 is shown by the sequence of plots in Figure 18, 

which shows 20 realisations (i.e., ‘fits’) from each of the SSD modelling tools for each of the replica 

datasets as a function of sample size.  

In the analyses that follow, we investigate the performance characteristics of the SSD modelling tools 

in terms of bias, confidence interval coverage and confidence interval width. Some of these 

characteristics are readily explained by Figure 18. For example, the reason that the bias in HC20 

estimates for the ccme_uranium replica data are all positive is explained by the fact that the 

majority of points where the horizontal line at p=0.2 intercepts the fitted curves are to the right of the 

point where p=0.2 intercepts the black curve (i.e.,the true HC20). Furthermore, because the fitted 

SSDs are more compactly distributed about the true (black) curve as the sample size increases, this 

means that the magnitude of the bias diminishes. 
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Figure 18. Twenty realisations of the fitted distribution for each of the methods considered, including 

RBurrlioz (cyan lines) and two model averaged methods using ssdtools (default - using only the current 

BC default distributions: log-logistic, log-normal and gamma, ssdtools_ default – red lines; and all - using all 

the available distributions, gold lines) for four different sample sizes (n). The solid black line shows the 

theoretical source distribution. 
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Coverage estimates for these six simulated datasets generally declines with increasing sample size, 

and this was true across all methods, although not for all HC values for all datasets (Figure 19). Except 

for the replica anon_b dataset, the coverage for the HC1 declines monotonically for sample sizes 

greater than ~ 12 and is uniformly worse when the default distribution set in ssdtools is used and 

best when all distributions are used in ssdtools. The performance of Burrlioz lies between these 

two extremes. The default set in ssdtools performs particularly poorly for the replica 

ccme_uranium dataset. Taken as a whole, the set of results is inconsistent. The following additional 

observations are pertinent: 

Replica anon_a synthetic dataset 

 coverages for HC5 and HC10 are consistently close to nominal 95%; less so for HC10 

 coverage for HC20 declines steadily when using the default candidate list from ssdtools

and the sample size is greater than 50. 

Replica anon_b synthetic dataset 

 coverage estimates are uniformly good across all sample sizes and all fitting strategies  

Replica ccme_boron synthetic dataset 

 coverages for HC5 are very close to the nominal 95% for al sample sizes

 poor coverage is observed for Burrlioz when the sample size is less than ~ 36 and 

ssdtools ‘all’ when the sample size is greater than ~ 80.

 Coverage for the HC20 is poor for all fitting methods with the ssdtools ‘default’ option 

performing worse, the ssdtools ‘all’ option performing best and Burrlioz in between. 

Replica ccme_glyphosate synthetic dataset 

 coverages for HC5 using ssdtools ‘all’ option are consistently close to the nominal 95% 

irrespective of sample size while the ‘default’ option fares particularly poorly and Burrlioz

somewhat better.  

 coverages for HC10 are consistently close to 95% with both ssdtools option performing 

better than Burrlioz

 coverages for HC20 are poor for the ssdtools ‘all’ option and Burrlioz although good 

for the ssdtools ‘all’ option with sample sizes less than ~64. 

Replica ccme_silver synthetic dataset 

 coverages for HC1 are all poor and decrease rapidly with increasing sample size with the 

ssdtools ‘default’ set performing worst. 

 coverages for HC5 are very good for both Burrlioz and ssdtools ‘all’ for all sample 

sizes. The ssdtools ‘default’ option has very poor coverage which declines linearly with 

increasing sample size. 

 coverages for HC10 are generally good for both ssdtools options but less so for 

Burrlioz. 

 coverages for HC20 are reasonable for both ssdtools options with Burrlioz performing 

poorly. 

Replica ccme_uranium synthetic dataset 

 coverages for HC1 are all poor and decrease rapidly with increasing sample size with the 

ssdtools ‘default’ set performing worst. 
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 coverages for HC5 are very good for Burrlioz and ssdtools ‘all’ and ssdtools

‘default’ for sample sizes <~80. 

 coverages for HC10 are very good for ssdtools ‘default’ but not any other method. 

 coverages for HC20 are all similarly poor. 

Figure 19. Coverage estimates for 95% confidence intervals of the HC estimates across four different 

protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 and HC20) for 

data simulated from six different source distributions (plot rows). Plots are coloured according to the applied 

fitting method and includes RBurrlioz and two model averaged methods using ssdtools (default - using 

only the current BC default distributions: log-logistic, log-normal and gamma, ssdtools_ default; and all - using 

all the available distributions). 
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In terms of bias, the relationship with sample size was very consistent and, in most instances, 

displayed the expected asymptotic decline to zero with increasing sample size (Figure 20). 

Figure 20. Bias (mean estimate-actual) of HC estimates across four different protection levels (plot columns - 

p = 0.01, 0.05, 0.1 and 0.=2; equivalent to HC1, HC5, HC10 and HC20) for data simulated from six different 

source distributions (plot rows). Plots are coloured according to the applied fitting method and includes 

RBurrlioz and two model averaged methods using ssdtools (default - using only the current BC default 

distributions: log-logistic, log-normal and gamma, ssdtools_ default; and all - using all the available 

distributions).  

There were however a few notable exceptions: 

 over-estimation of HC10 and HC20 for all methods and all sample sizes for the datasets 

based on anon_a , anon_b, ccme_boron

  over-estimation of HC20 for all methods and all sample sizes for replica datasets: 

ccme_boron; ccme_glyphosate, ccme_silver, and ccme_uranium
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 under-estimation of HC1 for all methods and all sample sizes (with one or two exceptions 

for very small sample sizes) for all replica datasets. The magnitude of bias in the 

Burrlioz estimates was generally greater than either of the estimates from ssdtools. 

The ssdtools ‘all’ option tended to have the lowest absolute bias over all replica 

datasets and sample sizes. In terms of confidence interval width, there was a consistent 

inverse relationship with sample size with all estimation methods performing almost 

identically in all instances (Figure 21). The small number of instances where differences 

between the methods was observed was invariably a result of the ssdtools ‘default’ 

option having wider intervals.

Figure 21. Mean 95% confidence interval width of HC estimates across four different protection levels (plot 

columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 and HC20) for data simulated from six 

different source distributions (plot rows). Plots are coloured according to the applied fitting method and 

includes RBurrlioz and two model averaged methods using ssdtools (default - using only the current 

BC default distributions: log-logistic, log-normal and gamma, ssdtools_ default; and all - using all the available 

distributions). 
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2.6 Refine mixture-modelling with a view to incorporation 

The use of statistical mixture-models was promoted by Fox as a convenient and more realistic way of 

modelling bimodal toxicity data (Fisher et al. 2019). Although parameter heavy, statistical mixture-

models provide a better conceptual match to the inherent underlying data generating process since 

they directly model bimodality as a mixture of 2 underlying univariate distributions that represent, for 

example, different modes of action (Fox et al. 2021). It has been postulated that a mixture-model 

would only be selected in a model-averaging context when the fit afforded by the mixture is 

demonstrably better than the fit afforded by any single distribution. This is a consequence of the high 

penalty in AICc associated with the increased number of parameters (p in Equation 7 of Fox et al. 

(2021)) and will be most pronounced for relatively small sample sizes. 

We first describe how mixtures have been incorporated into the ssdtools package and then use 

simulation studies to examine their impact in terms of confidence interval coverage and bias relative 

to single distributions, and the extent to which sample size influences their relative weight in a model 

averaging context. 

2.6.1 Implementation in ssdtools (TMB) 

The TMB version of ssdtools now includes the option of fitting two mixture distributions, 

individually or as part of a model average set. These are the lnorm-lnorm and the llogis-

llogis. The underlying code for these mixtures has three components: the likelihood function 

required for TMB; exported R functions to allow the usual methods for a distribution to be called (p, q 

and r); and a set of supporting R functions (see Appendix D for more details). Both mixtures have five 

parameters - two parameters for each of the component distributions and a mixing parameter (pmix) 

that defines the weighting of the two distributions in the ‘mixture.’ 

2.6.2 Simulation Study 1 (log-normal, log-logistic, inverse Weibull) 

The first simulation study was based on three different univariate parent distributions, the log-normal, 

log-logistic and inverse Weibull - so this simulation study indicates the outcome of including mixtures 

in simulated data that are known to have at most a single mode, and for which the parent distribution 

is in the distribution set being considered. We found that in terms of bias, both the ‘all’ (including 

mixtures) and ‘uni’ (all unimodal distribution) sets yielded very similar results, with little to no 

systematic bias, and overall bias converging to the expected 0 with increasing sample size (Figure 22). 

Similarly, the coverage of the model set using ‘all’ distributions was very high, and in fact slightly higher 

than the set including only the unimodal distributions (Figure 23). 
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Figure 22. Bias as measured as the log ratio of the estimated HC value against the actual known value, across 

four different species protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, 

HC10 and HC20) for data simulated from three different parent distributions (plot rows - inverse Weibull, log-

logistic and log-normal). Plots are coloured according to the distribution set used in model averaging, 

including all available distributions (all) and only the unimodal distribution (uni).
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Figure 23. Approximate coverage estimates for a nominal 95% confidence interval across four different species 

protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 and HC20) for 

data simulated from three different parent distributions (plot rows - inverse Weibull, log-logistic and log-

normal). Plots are coloured according to the distribution set used in model averaging, including all available 

distributions (all) and only the unimodal distribution (uni). 

2.6.1 Simulation Study 2 (Johnson family) 

The second study used data simulated from the Johnson family of distributions (Johnson 1949) that 

replicated the characteristics of six of the ssddata benchmark datasets1. In this example the parent 

distributions were also unimodal but were not included in the model set considered by ssdtools. 

We found that, in this scenario, including the two mixture distributions either had no impact on the 

HC estimate, or alternatively (in quite a few cases) substantially improved the bias in the HC estimates 

(i.e., estimates were much closer to the theoretical value) (Figure 24). Similarly, including the mixture-

models also either had no impact on coverage of the estimated HC confidence intervals, or 

substantially improved it (Figure 25). In some cases, this improvement was sufficient to reach the 

expected 95% level, even when coverage of the unimodal set was extremely low (for example, the 

HC5 for ccme_boron, Figure 25). 

1 The use of a theoretical distribution meant that the true HCx was known and also allowed for the generation 
of many samples of varying sample sizes. 



Figure 24. Mean bias (estimated-actual) of HC estimates across four different protection levels (plot columns 

are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 and HC20) for data simulated from six different 

source distributions (plot rows). Plots are coloured according to the distribution set used in model averaging, 

including all available distributions (all) and only the unimodal distribution (uni).
47 
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Figure 25. Coverage estimates for nominal 95% confidence intervals of the HC estimates across four different 

protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 and HC20) for 

data simulated from six different source distributions (plot rows). Plots are coloured according to the 

distribution set used in model averaging, including all available distributions (all) and only the unimodal 

distribution (uni). 

2.6.2 Simulation Study 3 (mixtures) 

To examine how the AICc weighting of models in the ‘all’ distribution set changes with sample size, 

we undertook a Simulation Study based on a combination of a log-normal and a log-logistic

distribution. The data for each simulation were based on 1000 random draws from the two 

distributions, with the number of draws from each defined by a mixing proportion (the proportion of 

the data comprising the log-normal), including 0 (no log-normal data, entirely log-logistic), 0.5 (an 
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even mixture of log-normal and log-logistic) and 1 (all log-normal data, no log-logistic). The 

parameters of the underlying log-normal and log-logistic distributions were selected to ensure 

mixture data showed at least some visual evidence of bimodality (Figure 26). Two values for the 

parameter defining the mean of each distribution (meanlog; locationlog) were selected, with the 

parameters controlling dispersion set as 0.5 and 0.2 respectively (sdlog and scalelog). Simulation 

data were generated from an expanded grid of both parameter and mixing values, resulting in a total 

of 12 simulated datasets, four of which showed clear bi-modality (Figure 26). 

When we fit these data using all the distributions available in the TMB version of ssdtools, we 

found that at the lowest sample size examined (n=8), weights were relatively evenly distributed across 

the seven two-parameter distributions (Figure 27). As would be expected, the mean weight for the 

underlying data generating distribution increased systematically with sample size for the datasets 

comprised solely of log-logistic (mixing = 0) or log-normal (mixing = 1) data (Figure 27). Similarly, the 

weight for the Burr III distribution also increased with sample size for these unimodal datasets and 

tended to be higher for data generated from the log-logistic distribution (Figure 27).  

Figure 26. Density plots showing the simulated data for each of the datasets used in the mixture Simulation 

Study. Colours indicate the mixing proportion, including 0 (no log-normal data, entirely log-logistic), 0.5 (an 

even mixture of log-normal and log-logistic) and 1 (all log-normal data, no log-logistic). Values in parentheses 

show the mean values of the underlying log-normal and log-logistic distributions respectively. 
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While at a sample size of 8 neither of the two mixture distributions received any support (Figure 27), 

at a sample size as low as 16 the mixture-models gained substantial support (summed mean AICc 

weight is near 1) for dataset d6 (Figure 27). This is the mixture dataset exhibiting the most extreme 

bimodality (Figure 26). For the remaining simulated bimodal data, the mixture distributions do not 

receive substantial support (>0.25) until sample sizes of 32 are reached, with higher support requiring 

even larger sample sizes (Figure 27). 

Figure 27. Mean AICc based model weights for each of the fitted distributions, for each dataset in the 

Simulation Study, as a function of sample size. Colours indicate the mixing proportion, including 0 (no log-

normal data, entirely log-logistic), 0.5 (an even mixture of log-normal and log-logistic) and 1 (all log-normal

data, no log-logistic). The horizontal line indicates a weight of 0.1, representing the expected value if all 

distributions were weighted equally. 
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3 ALTERNATIVE CI AND HCX ESTIMATION STRATEGIES 

3.1 Parameter estimates using L-moments (Burr III) 

Maximum likelihood estimation (MLE) is ubiquitous and generally the default estimation strategy used 

in computational statistics. There are sound theoretical reasons underpinning this choice although it 

needs to be recognised that MLE is not the only estimation strategy. A recurring difficulty with 

maximum likelihood estimation of Burr III parameters when applied to small ecotoxicological datasets 

is the difficulty the numerical algorithms have in converging to the MLEs. This is because for these 

datasets the likelihood surface is sometimes very flat in the vicinity of the MLE and thus has no well-

defined peak or maximum. This means that the value of the likelihood function is almost identical for 

wildly different parameter estimates and thus there is no basis for selecting one solution in preference 

to another. 

We have explored the possibility of using the EM algorithm and L-moment estimation (Hosking 1990, 

Hosking 2006). The EM algorithm is generally used for estimating the parameters of latent-variable 

models (i.e., models that contain variables for which direct observation is not possible) or in situations 

where data are missing. Very little work appears to have been done on using the EM algorithm in the 

context of Burr distributions although the conference paper by Ismail and Khalid (2014) used the EM 

algorithm with Burr III distributions applied to censored data. There may be some merit in exploring 

the use of the EM algorithm when dealing with censored toxicity data, however these situations are 

already adequately handled by existing software tools (MOSAIC, ssdtoolbox and ssdtools) and 

as such this is unlikely to be a profitable avenue of further investigation. 

In the remainder of this section we provide theoretical results and detailed procedures for the 

estimation of Burr III parameters using L-moments. The use of L-moments shows considerable promise 

in alleviating (if not avoiding) many of the difficulties encountered with maximum likelihood 

estimation for Burr distributions. A draft technical report is provided in Appendix E. 

The concept of L-moments was introduced by Hosking (1990) and they have found to be particularly 

useful for describing probability distributions. Unlike conventional moments (which are also widely 

used to describe and fit probability distributions), L-moments have several unique properties. Among 

these is the fact that any distribution with finite mean is uniquely determined by its L-moments. 

Although the use of conventional moments for estimating the parameters of a probability distribution 

(the so-called method-of-moments or MoM estimation) has a long history, their use in this context 

has largely given way to likelihood-based approaches (MLEs).  

Maximum likelihood estimators are generally more accurate than conventional MoM estimators and 

they enjoy several desirable statistical properties not shared by MoM estimators such as 

asymptotically normality. Furthermore, for some monotonic function ( )g  , the estimate  ˆg  is the 

MLE of  g  where̂ is the MLE of . 
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Advantages of L-moment estimators are: 

 They are more robust than conventional moments to outliers in the data; 

 L-moment estimators can usually be used when MLEs are either unavailable or difficult 

to compute 

 They enable more robust inference to be made from small samples about an underlying 

probability distribution;  

 They can yield more efficient parameter estimates than maximum likelihood estimates 

(in the sense that they make better use of the available data); 

 They characterise a wider range of distributions than is possible with conventional 

moments; 

 Small sample bias of L-moment estimators is generally less than conventional moment-

based estimators;  

 L-moments can be used to specify a distribution even when some of its conventional 

moments do not exist. 

Since their introduction 30 years ago, L-moments have been widely used by hydrologists for flood-

frequency analyses (Kjeldsen et al. 2002, Kroll & Vogel 2002, Lim & Lye 2003). 

Mathematical and computational details for estimating the parameters of the Burr III distribution 
using L-moments are given in Appendix E. Although we have not undertaken any comprehensive 
testing, the following example suggests this may be a productive avenue for further investigation 
with a view to using in future releases of software for fitting SSDs. 

Example: ssddata metolachlor dataset.  

This dataset consists of 21 measurements of metolachlor (an herbicide) concentrations in freshwater 

(Figure 28). These were comprised of chronic toxicity values µg/L for fish, macrophytes, and 

microalgae. Metolachlor is moderately persistent to persistent in the environment and can impact 

birds, small mammals, and endangered fish. Further details may be found in (ANZG 2020).  

Using Burrlioz we obtain the following MLEs for the Burr III distribution:

ˆ ˆˆ776.232;  0.970;  and 0.416b c k   . With these parameter estimates, the HC estimates are: 

HC1 = 0.0085; HC5 = 0.46; HC10 = 2.58; and HC20 = 14.65. 

Figure 28. Histogram of metolachlor concentrations in freshwater. 



Given the wide range of metolachlor toxicity values (0.53 to 6,528), it is more convenient to work with 

the (natural) log-transformed data. The log-transformed data range from -0.635 to 8.784. The Burr III

distribution cannot be fitted directly to these transformed data due to the negative values. To 

overcome this, the log-transformed values were subtracted from 10. Thus, in terms of the original 

data (x), the transformed values (y) were obtained as 10 ln( )i iy x  . The first four sample L-

moments for the y values are 5.296, 1.611, 0.175, and 0.147. A comparison of the empirical and fitted 

distributions is shown in Figure 29. The HC estimates from the L-moment fit are: HC1=0.021; 

HC5=0.73; HC10=2.90; and HC20=12.01. 

Figure 29. Empirical cdf of transformed metolachlor toxicity data together with fitted Burr III distributions 

using MLEs and L-moment parameter estimates. 

The fits and HC estimates are similar but not identical – this is to be expected. By way of comparison, 

the ssdtools package gave the following: HC1=0.093; HC5=0.74; HC10=2.48; and HC20=11.8 which 

are similar to those obtained using the L-moment estimates.  

Although no general conclusions can be drawn from this limited analysis, we believe that L-moments 

may have a role to play in SSD modelling – if only to provide quickly and conveniently a ‘good’ set of 

initial parameter estimates to supply to software tools that estimate parameters iteratively. 

Suggestion for further investigation: utility of L-moments 
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3.2 Closed form estimation (Burr III) 

As mentioned in Section 2.1, one of the appealing properties of the Burr family of distributions is the 

fact that the cdf (see Equation 2) is ‘invertible’ – meaning there is a closed-form expression for quantile 

estimation. The pth quantile for the BurrIII is given by Equation 8. 

  1
1

; , ,      0 1; , , 0

1
1

c
k

b
q p b c k p b c k

p

   

 
       

(8) 

Thus, while the point estimate for the HCx is a straightforward computation using Equation 8 with

p x /100, the determination of a confidence interval is not straightforward with Burrlioz

resorting to computationally-intensive bootstrapping methods to achieve this. 

As part of our evaluation of the Burr III distribution, we have derived a closed-form expression for the 

variance-covariance matrix of the parameter estimates ˆ ˆˆ, ,b c k which can be coupled with the delta-

method to provide a good approximation to the standard error of the HCx obtained from Equation 8. 

Note that only main results are presented here, with details of the mathematical derivation provided 

in Appendix F. 

The variance-covariance matrix for ˆ ˆˆ ˆ, ,T b c k      is given by Equation 9. 

ˆCov     ℐ  ̂
-1

̂
  (9) 

where ℐ  ̂ is the information matrix. The elements of ℐ are complex and are given in Appendix F. 

Using the delta method, an estimate of the variance of the estimated HCx is given by Equation 10. 

     ˆ
ˆ ˆ ˆT

Var Q


         (10) 

where    ;Q q p   for some p and  , ,b c k  and   i is the gradient vector given by 

Equation 11. 
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  (11) 
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Example: ssddata cadmium dataset 

Burrlioz parameter estimates for this sample of n=36 toxicity values are:

 ˆ ˆˆ0.00119; 0.468; 30.007b c k  
.  

Using Equations provided in Appendix F, we obtain: 

ℐ  ̂ -1

4 3

3 3

4

5.272x10 1.814x10 5.706

1.814x10 9.557x10 19.018

5.706 19.018 6.189x10

 

 

 
 

  
   

 . 

As an aside, we can compute the correlation matrix, ℛ of the parameter estimates from ℐ  ̂ -1
: 

ℛ =

1.0 0.808 0.999

0.808 1.0 0.782

0.999 0.782 1.0

 
 

 
   

from which we observe the near perfect (negative) correlation between the estimates of b and k – 

an issue that was noted in Section 2.1. From Equation 11 we have: 

   ˆ 124.049 1.516 0.011
T

    and with p = 0.05 in Equation 9 we obtain

  3ˆ 3.955 x 10Var Q  
 

  and hence  ˆ 0.063SE Q 
 

 . The estimated HC5 from Equation 8 

is5 0.147HC  and thus an approximate  1 100%  confidence interval is: 

𝐻𝐶5 ± 𝑡
𝑛−3,(1−

𝛼

2
)

⋅ 𝑆𝐸[𝐻𝐶5 ] (12) 

With 0.05   in Equation 11 we have an approximate 95% CI for the true HC5  0.019;0.275 . 

By way of comparison, Burrlioz gives5 0.147HC  ; 𝑆𝐸[𝐻𝐶5 ] = 0.0975;and 95% CI

 0.0150;0.192 . 

This example demonstrates that, to a first-order approximation, the formulae presented in this section 

provide a reliable means of estimating the standard error of an HCx thereby eliminating the need to 

use the more computationally intensive bootstrapping approximation.

3.3 Parametric versus non-parametric bootstrapping 

Burrlioz 2.0 uses a non-parametric bootstrap method to obtain confidence intervals on the HC 

estimate. Non-parametric bootstrapping is carried out by repeatedly resampling the raw data with 

replacement, and refitting the distribution many times. The 95% confidence limits are then obtained 

by calculating the lower 0.025th and upper 0.975th quantiles of the resulting HC estimates across all 
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the bootstrap samples (typically >1000). This type of bootstrap takes into account uncertainty in the 

distribution fit based on uncertainty in the data. 

The ssdtools package by default uses a parametric bootstrap. Instead of resampling the data, 

parametric bootstrapping draws a random a set of new data (of the same sample size as the original) 

from the fitted distribution to repeatedly refit the distribution. Upper and lower 95% bounds are again 

calculated as the lower 0.025th and upper 0.975th quantiles of the resulting HC estimates across all the 

bootstrap samples (again, typically >1000). This will capture the possible uncertainty that may occur 

for a sample size from a given distribution, but it assumes no uncertainty in that original fit, so it is not 

accounting for uncertainty in the input data. 

The new TMB version of ssdtools has the capacity to do bootstrapping either using the Burrlioz

non-parametric method, or the original parametric method of ssdtools (based on 

fitdistrplus), and we used this functionality to examine bias and compare the resulting coverage 

of the two bootstrapping methods.  

We found that both the non-parametric and parametric bootstrapping methods result in very similar 

estimates of the confidence intervals across all the simulation data, with the difference between the 

two methods converging to near zero at large samples sizes, particularly for the high PC values 

(i.e.,20% protection, Figure 30). There is a tendency for the lower bound estimate to be higher for the 

non-parametric than the parametric bootstrap method when sample sizes are low, and this was the 

case across all three simulated distributions (Figure 30).  

Approximate coverage was actually very low in many cases for the ssd_fit_burrlioz() estimates 

regardless of the bootstrapping method used (Figure 31). Coverage was always higher for the 

parametric bootstrap method compared to the non-parametric bootstrap method – although this 

difference is generally marginal (Figure 31). Therefore, we recommend that the parametric 

bootstrapping currently employed by ssdtools should be the preferred bootstrapping method for 

estimating confidence intervals. 

Coverage is often better at sample size 8 – presumably because at that sample size the algorithm uses 

the log-logistic distribution that does a reasonable job of representing the data generated by all three 

distributions (Figure 31). Coverage patterns are very complex, probably because of the inter 

relationships between sample size and the resulting fitted distribution (Figure 31), and these issues 

are discussed in more detail in Sections 2.5.3 and 2.5.4. 
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Figure 30. Log ratio of the non-parametric versus the parametric bootstrap method for estimating lower and 

upper bound (lwr and upr) confidence intervals using the ssd_fit_burrlioz() function implemented in 

ssdtools. Data are based on the simdat3 simulation dataset (Simulation Study 1). 
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Figure 31. Approximate coverage estimates for a nominal 95% confidence intervals across four different 

species protection levels (plot columns - p = 0.01, 0.05, 0.1 and 0.2) for data simulated from three different 

parent distributions (plot rows - inverse Weibull, log-logistic and log-normal). Plots are coloured according to 

the bootstrapping method (parametric versus nonparametric). All fits were done using the 

ssd_fit_burrlioz() function in ssdtools. Data are based on the simdat3 simulation dataset 

(Simulation Study 1). 

4 DISCUSSION 

4.1 Comparing SSD methodologies 

Comparisons across the various estimation methods suggested that for the most part HC estimates 

are generally quite similar, regardless of the method used – with strong relationships observed 

between methods for the benchmark datasets, as well as our simulated data. There was, however, 

evidence of bias associated with some methods, with the result being low realised coverage of the HC 

95% confidence interval and a high probability that derived HC values are not robust. 

From our Simulation Study 1 we found that bias is low when data are fitted using the same distribution 

as the parent distribution and shrinks to near zero as sample size increases. The sample size required 

to ensure that the nominal 95% confidence interval has actual coverage close to the 95% nominal level 

differs depending on both the simulating parent distribution, as well as the fitting distribution. Some 

distributions, such as the log-logistic, tend to produce very wide confidence bands, particularly at low 
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sample sizes. Such distributions can yield good coverage at sample sizes as low as 8, even when applied 

to data simulated using alternative distributions, albeit at the cost of very high estimation uncertainty. 

Where the fitting distribution is the same as the simulating distribution, samples sizes in the order of 

>60 are required to yield the notional 95% coverage, and such large sample sizes are rarely available 

in practice.  

Where the fitting distribution is not the same as the generating distribution, bias can be extremely 

high, and this was explored in both Simulation Studies 1 and 2. When bias is high, increasing sample 

size reduces the confidence interval widths. This interplay results in the sometimes counter-intuitive 

outcome that coverage declines with increasing sample size. The complex interplay between bias and 

confidence interval width and the relationship with sample size, means that the safest option is to use 

the model averaging approach that includes all (or at least a large range, see more below) of the 

available distributions. For simulations for which the parent distributions are included in the ‘all’ 

available set, this approach is always optimal, because it yields low bias and good coverage in all cases. 

The more distributions that are included in this set, the more likely one of them will closely reflect the 

underlying generating distribution of the data, yielding lower bias and better coverage of resulting 

estimates. Of course, there is also the issue that included distributions need to be sufficiently different 

to avoid the potential issue associated with over-weighting a particular shape (Fox et al. 2021). 

However, the sometimes very poor performance of the model averaging approach when the true 

generating distribution is not included in the set considered suggests that the most robust approach 

will be to include all available distributions that can capture different shapes, providing that their 

estimation is numerically stable and relatively unbiased (see more below). Consequently, it seems 

important to include distributions that may, for the most part, produce very close estimates on 

average. A good example would be the log-logistic and log-normal, which can appear very similar in 

practice. Because the log-logistic distribution can have a longer left tail, a log-normal fit to such data 

can be quite biased and yield very low coverage when estimating very low species protection values. 

The TMB version of ssdtools includes a large range of potential distributions, and if we assume that 

the true underlying distribution is represented by at least one of these, a model averaging approach 

including all of them is quite robust. When we generate data using a distribution not represented by 

any within this set (as we did in Simulation Study 2), the model averaging approach can yield biased 

results and low coverage of 95% confidence intervals even at very high sample sizes. Across the six 

simulated datasets that were used to investigate this issue, using the ‘all’ model average set resulted 

in HC1 and HC5 coverage that was often similar or greater than the ‘default’ model averaging method 

using the restricted range of distributions. For the HC10 and HC20 estimates, there are cases where 

the ‘default’ set provides better coverage than the ‘all’ set (see silver, uranium and glyphosate, Figure 

19). Although not shown here, this trend was not driven by the inclusion of the two mixture-model 

distributions in the ‘all’ model average candidate set, and the observed pattern simply reflects the 

slightly better fit (i.e., less bias) of this ‘default’ set through the region of the curve representing these 

two larger HC estimates (Figure 18). Given that this portion of the curve is generally of the least 

interest, particularly when considering that the Australian/NZ guidelines use either the HC5 or HC1 for 

deriving guideline values, it seems clear that the ‘all’ model set should be preferred, even when the 

underlying synthetic data were generated by a family of distributions that are not included in this 

model set.  



Notably, RBurrlioz performed worse than either of the ‘default’ or ‘all’ model averaging methods 

in all cases, both in terms of coverage (Figure 19) and bias (Figure 20), reflecting its reduced flexibility 

and capacity to mimic the underlying data (Figure 18). So regardless of whether the true distribution 

is included in the model average set or not, model averaging is clearly a superior method to that 

currently being used via Burrlioz 2.0.

4.2 Mixture distributions 

Including mixture distributions in simulations based on unimodal parent distributions generated 

outcomes at least as good as a model averaging approach based only on unimodal distributions. 

Importantly, including mixtures did not lead to any systematic bias (i.e., HC values that were 

consistently either over- or under- estimated). This suggests there is generally no ‘harm’ in including 

mixtures in the candidate set, even when data are known to be unimodal. 

Including mixture distributions had little to no effect when the unimodal parent distribution was 

included in the candidate model set. Although surprisingly, including mixture distributions in the 

candidate set substantially improved coverage in some cases when the unimodal parent distribution 

was not included as part of the model set. This suggests that even where there is no strong evidence 

of bimodality, including mixtures can potentially yield more robust HC estimates when the underlying 

data do not come from any single unimodal distribution from the candidate list. This is not surprising 

and simply reflects their enhanced degree of flexibility in distributional shape over the sample domain. 

For very small sample sizes, neither of the mixture distributions received any substantial support, 

reflecting the large penalty on the number of estimated parameters associated with AICc. Similarly, 

the Burr III distribution also received little support at these small sample sizes, presumably also a 

consequence of the larger parameter count for this distribution. For datasets having two, well-

separated modes, a 2-component mixture-model was preferentially chosen over any single 

distribution for sample sizes as low as 16. For simulated mixture datasets showing slightly less extreme 

bimodality, much larger samples sizes were required for the mixture distributions to attain a high 

weight in the candidate set. 

With respect to confidence interval coverage, the inclusion of mixture-models can lead to better 

outcomes – namely actual coverage closer to the nominal confidence with intervals that are narrower 

than those afforded by univariate models. General conclusions about the utility of mixture-models are 

difficult to make since this depends on the interplay between sample size, distributional fit and 

separation of the modes for any given dataset. What is clear, however, is that statistical mixture-

models provide a more comprehensive ‘arsenal’ of distributional shapes and are a natural modelling 

framework for toxicity data generated by two or more distinct processes. 

 Suggestion for further investigation:  Additional mixture distributions 

In  
lo
vestigate the utility and desirability of including other mixture distributions, such as a
gnormal – log-logistic. 
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4.3 CI and SE estimation methods 

The default method for obtaining HC confidence intervals in ssdtools is the parametric bootstrap. 

This differs to Burrlioz 2.0, which uses the non-parametric bootstrap. Results from our Simulation 

Study show that the results of the two methods are in fact very similar, although coverage was always 

slightly higher for the parametric bootstrap (Figure 31), suggesting that this should be the preferred 

approach to adopt for any future tool. 

We explored the use of alternative methods for obtaining the confidence interval of HC estimates. 

This included using the closed-form expression for the variance-covariance matrix of the parameters 

of the Burr III distribution, coupled with the delta-method, as well as an alternative bootstrap method 

for the inverse Pareto distribution based on statistical properties of the parameters. In both cases, it 

appeared that these methods can give results similar to other traditional bootstrapping approaches 

in much less time, and are therefore potentially worth further investigation. However, 

implementation of such methods across all the distributions now available in ssdtools would be a 

substantial undertaking. 

An alarming outcome of the coverage comparisons for the “Burrlioz” -like methods (RBurrlioz

and ssd_fit_burrlioz() with parametric and non-parametric bootstrapping) is that all of them 

show very low coverage at low to moderate sample sizes - which are the sizes typical of SSD datasets. 

Ironically, for these methods, higher coverage was obtained at the lowest examined sample size of 8 

for our simulated data (Figure 31). This outcome is likely due to the use of the log-logistic distribution 

for sample sizes <8 in the Burrlioz framework, which apparently yields a relatively good fit to these 

simulated data. Of course, simulating data using an alternative distribution would likely yield a 

different outcome. Our coverage estimates from the simulation results suggests that overall coverage 

of the 95% confidence intervals of the HC values can be substantially improved using a model 

averaging approach that includes all the available distributions. 

4.4  Finalise default distributions 

Deciding on a final default set of distributions to adopt using the model averaging approach is not 

trivial, and we acknowledge that there is probably no cut and dry ‘solution’ to this issue. However, the 

default set should be underpinned by a guiding principle of parsimony, i.e., the set should be as large 

as is necessary to cover a wide variety of distributional shapes and contingencies but no bigger. 

Further, the default set should result in model averaged estimates of HCx values that: 1) minimise 

bias; 2) have actual coverages of confidence intervals that are close to the nominal level of confidence; 

3) estimated HCx and confidence intervals of HCx are robust to small changes in the data; and 4) 

represent a positively continuous distribution that has both right and left tails. 

4.4.1 Sensitivity and numerical stability issues 

While it seems reasonable to aim for a distribution set that results in model average estimates of HCx 

that are insensitive to small changes in the data, this may be difficult to achieve in practice. Estimation 

of low-order quantiles using small sample sizes is fraught, and some would say, statistically reckless. 

While the extreme left tail of most distributions will always show some sensitivity, there are some 



62 

distributions that appear to be inherently unstable. Practical experience has revealed that the 

Gompertz and Burr III distributions are particularly sensitive to small changes in the data as well as the 

initial starting values for parameter estimates. We examined how frequently each of the distributions 

currently included in the development version of ssdtools were able to successfully converge 

across the datasets used in both simulation studies (Figure 32). The gamma, inverse Pareto, log-

Gumbel (inverse Weibull), log-logistic and log-normal are almost always reliably estimated (Figure 32). 

Of the remaining distributions, the Gompertz is the only distribution that fails to yield consistent 

convergence for any of the tested datasets, at any sample size (Figure 32). 

Figure 32. The proportion of simulated datasets/iterations for which the ssdtools -fitted distributions were 

able successfully converge. Note that for the Burr III and both mixture distributions, this proportion includes 

distributions that may have returned a result, but this was at one of the bounds of the parameter set (i.e. 

shape1 or shape2 = 20 or 0.05 in the case of Burr III, or p=<0.2 in the case of mixtures). 

While the numerical instability issues associated with the Burr III distribution yields low convergence 

(Figure 32), this is only in the context of defining lack of convergence to also include the situation when 

one or more of the parameters are at the bounds required for numerical stability (see Section 2.1). 

Indeed, the proportion of true non-convergence for the Burr III distribution is actually very low (Table 

6, 1% or less). While “convergence” of the two statistical mixture distributions is relatively low (Figure 
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32), this is due to the default settings of ssdtools at the time simulations were run, which set a 

lower bound of 0.2 on the mixing proportion. A mixture distribution was deemed not to have 

converged when a parameter estimate was at this bound. This default behaviour has been changed 

(see Appendix I: Additional analyses assessing the recommended distribution set). Using the 24 

example datasets from the ssddata package. we compared the difference in AICc based model 

weights and HCx estimates when the lower bound for the log-normal-log-normal mixing parameter 

was 0.2 (pmix = 0.2) and the distribution was deemed not to have converged if the pmix estimate hit 

this bound (at_boundary_ok = FALSE) (the default settings used in the earlier simulations 

studies) with the results when the lower bound on pmix was set to 0 (pmix = 0) and the distribution 

was retained in the set even when at the boundary condition (at_boundary_ok = TRUE, see 

Appendix I) While there were slight differences for some datasets in the weights for the mixture 

distribution (Table I-1), ultimately there was very little difference in the estimated HCx values (Figure 

I-6). Allowing the mixing parameter (pmix) to go to 0 and setting at_boundary_ok = TRUE did 

result in a slightly lower proportion of successful bootstrap iterations in some cases, meaning that to 

obtain confidence bands on the HCx the argument the required proportion of successful bootstrap 

iterations (min_pboot) had to be lowered from the default 0.99 (Table I-2). Further investigation is 

required to understand and resolve this issue in the current development version of ssdtools. 

The only other distribution that frequently did not converge for our simulated data was the Weibull

(Figure 32). Given that there are no currently implemented boundary conditions for either the Weibull

or the Gompertz distributions, the source of this lack of convergence warrants further investigation 

before their inclusion into the default distribution set should be considered. Investigations into 

convergence issues for both of these distributions indicated that the original fitdistplus version 

of ssdtools, while also failing to converge reliably for the Gompertz distribution, works well for the 

Weibull distribution. Troubleshooting the TMB based development version of ssdtools for the 

Weibull distribution indicated there were issues with finding appropriate starting values and these 

have now been resolved using a more sophisticated mathematical algorithm rather than arbitrary 

numerical values. 

Table 6. The proportion of datasets/iterations for which the ssdtools -fitted Burr III distribution has 

parameter estimates at one (or more) of the bounds (At bounds), failed to converge entirely (True non-

convergence), or was able to successfully converge without reaching one of the bounds (Converged and not 

at bounds). Results are summarized across both the Study 1 and Study 2 simulated datasets. 

Sample size At bounds True non-convergence Converged and not at bounds 

8 0.75 0.04 0.21 

16 0.67 0.01 0.33 

32 0.61 0.00 0.39 

49 0.55 0.01 0.44 

64 0.58 0.00 0.42 

100 0.53 0.01 0.46 

128 0.56 0.00 0.44 

How best to include distributions into the model averaging framework in the case where one (or more) 

parameter estimates meet boundary conditions is an unresolved issue. For the Burr III distribution, 
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meeting the boundary for either the shape1 and shape2 parameters suggests that the underlying 

distribution is one of the two limiting forms of the Burr III (inverse Pareto, or inverse Weibull). If these 

limiting distributions are in the default set of distributions over which model averaging is to occur, 

there are two options: 1) acknowledge that the Burr III is at one of its limiting forms, deem it to be 

non-converged and leave it out of the final set used in the model average; or 2) allow the bounded 

distribution to also remain in the set, and assume that the extra parameter count will ensure there is 

insufficient weight such that it will have limited influence over the model-averaged HC estimate. We 

examined the relative weight of the Burr III, inverse Pareto and log-gumbel (inverse Weibull) 

distributions as fit using ssdtools across all simulated datasets, to determine how the weight of 

the Burr III changes with both sample size and depending on whether any of the parameters were at 

the bounds (Figure 33).  

Across the 2,632 simulated datasets from Simulation Study 1 there were very few instances where the 

Burr III distribution had high weight when one or more of the estimated parameters were at the 

bounds (left hand panel, Figure 33). The exception was for data generated using the log-logistic

distribution (left hand panel, Figure 33). However, this result merely reflects the fact that the log-

Gumbel (inverse Weibull) or the inverse Pareto provide poor representations of data generated from 

a  log-logistic distribution. Were the log-logistic to also be included in this model set (as would be done 

in the usual model-averaging approach) the Burr III would be unlikely to have a high relative weight 

(see Figure 27). When data are generated using the inverse Weibull distribution (log-gumbel), the 

weights for this distribution are high and are near one when the Burr III fit has one or more parameters 

at the boundary. For larger sample sizes, a properly converged Burr III fit that is not at a boundary can 

still have substantial weight for data generated using the inverse Weibull (left-hand panel, Figure 33). 

For the Simulation Study 2 results based on the Johnson family for which none of the included 

distributions is the parent distribution, weights for the Burr III in the case of when one or more 

parameters are at the boundary are consistently very low (right-hand panel, Figure 33). This outcome 

suggests that there will be very little material difference between which of the two options above are 

selected, and any final decision is largely philosophical. 
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Figure 33. AICc based weights for the Burr III (burrIII3), inverse Pareto (invpareto) and log-Gumbel (lgumbel) 

distributions fitted using ssdtools for the Simulation Study 1 (left-hand plot) and 2 (right-hand plot) 

datasets. Plot rows show the data sample size. For Simulation Study 1, plot columns show the parent 

distributions. Boxplot colours show the convergence status of the Burr III distribution for the model fit, 

including 0 (parameters were at one of the defined bounds of shape1 or shape2 = 20 or 0.05), 1 (successful 

convergence, parameters not at bounds) or NA (non-convergence due to issues unrelated to bounds). 

4.4.2 Incorporation of the inverse Pareto as a candidate SSD.

While the inverse Pareto distribution is implemented in the Burrlioz 2.0 software, it is important 

to understand that it is done so only as a limiting distribution. The inverse Pareto is not offered as a 

stand-alone candidate SSD in the Burrlioz 2.0 software. We have spent considerable time and 

effort in this report exploring the properties of the inverse Pareto distribution, including deriving bias 

correction equations and alternative methods for deriving confidence intervals. This work has 

substantial value for improving the current Burrlioz 2.0 method, and our bias corrections should 

be adopted when deriving HCx estimates from the inverse Pareto where parameters have been 

estimated using maximum likelihood.  

As is the case with the Burrlioz 2.0 software, we have decided not to include the inverse Pareto

distribution as a default SSD model but instead reserving its use as a limiting form of the Burr III

distribution when the numerical calculations suggest this is necessary with the current Burrlioz

like framework. As a stand-alone SSD, the inverse Pareto distribution presents several difficulties. This 

includes the requirement to make a choice between the so-called ‘European’ and ‘American’ versions 

of the inverse Pareto distribution – the first being unbounded and the second being bounded to the 
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right (which is problematic in the context of ecotoxicology); and potential problems with 

bootstrapping estimation and inference. In addition, we have observed counter-intuitive results when 

fitting the inverse Pareto distribution to certain data sets (for example, the ccme_boron dataset in 

ssddata) whereby the likelihood (and hence model-average weight) is high but both a visual 

inspection of the fitted distribution and the goodness-of-fit statistics reveal a demonstrably poorer fit 

when compared to other ‘less likely’ distributions. This issue would require further investigation 

before this distribution could be confidently included as a standalone distribution in the 

recommended set. 

The European version of the inverse Pareto distribution could potentially be added to ssdtools and 

indeed it is already available in the R via the actuar package, however this was deemed to be 

unwarranted. Our experience with actual toxicity data sets indicated that there was little difference 

in the fits provided by the gamma distribution (already in the candidate list) and the European inverse 

Pareto distribution. Further, mathematical theory dictates the use of the American version of the 

inverse Pareto distribution as the limiting form of the Burr III under conditions outlined in Section 2.2. 

It would therefore be confusing to use both versions of the inverse Pareto distribution in the 

ssdtools software. 

4.4.3 Parsimony – the minimum “optimal” set 

Minimising the number of candidate distributions in the default set will also reduce computational 

time and potentially avoid overweighting. In addition, secondary considerations suggest that the 

candidate distributions should not be overly complex nor unrealistic in the context of ecotoxicology 

(an example of the latter is the triangular distribution which has no left or right tails).  

Even if a purely theoretical comparison of the performance of different default distribution sets was 

possible, this would still not extinguish the overarching problem of identifying an ‘optimally’ minimal 

set of distributions. This is because there is an infinite number of theoretical distributions from which 

this selection could be made. When confronted with such problems, statisticians often impose 

additional constraints to limit the scope of the problem – for example, by only considering 

distributions that belong to a certain class or ‘family’ such as the exponential class of distributions. 

While the exponential class encompasses a wide variety of distributions such as the normal, log-

normal, logistic, log-logistic etc., it does not include the Burr family of distributions which we believe 

are important for SSD modelling. In any event, a theoretical comparison of default distribution sets is 

an entirely new proposition and research activity that is not within the scope of the current project. 

Our assessment of different options for the default distribution set is thus necessarily limited to an 

examination of the results of computer simulation studies combined with best professional 

judgement. While this approach has yielded useful results and insights, it is recognised that it is 

imperfect and subject to experimenter bias. Clearly, our results pertain only to the small number of 

scenarios that we chose. Other experts may disagree with our choices, methodology, and 

interpretations. This is inevitable but not pathological. To minimise systematic bias in our evaluation 

of candidate sets we developed the following three-tiered approach for the inclusion of test datasets: 

Round 1: Approximately 2,000 synthetic datasets covering a wide variety of skewness-kurtosis 

combinations generated from distributions included in the various software tools being 

evaluated. These were the log-normal, log-logistic, and inverse Weibull. 
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Round 2: A small number of ‘replica’ datasets that were generated using the Johnson family of 

distributions (Johnson 1949). Six member datasets from the ssddata collection were used as 

the basis of the ‘replica’ data by determining the member of the Johnson family that had the 

same first four moments as those of the ssddatasets. This approach allowed us to replicate 

the characteristics of real ecotox datasets while providing access to the true, theoretical HCx 

values. 

Round 3: A small number of “mixture” datasets based on a log-normal and log-logistic that were 

used to evaluate how the weighting of mixtures changes with sample size and assess their 

practical usability. 

Overall, we found the best outcomes in terms of both coverage of confidence intervals for and bias in 

estimated HCx were obtained using all the available distributions - including the mixture distributions. 

However, in the interests of parsimony at least some discussion regarding reducing this set is 

warranted. In the context of avoiding the potential issue of “over-weighting” (Fox et al. 2021) it is 

prudent to not include distributions that are extremely similar.  

Two of the most common distributions used in SSD modelling are the log-normal and log-logistic

distributions. Although these distributions have some common properties (for example, both are 

always positively skewed) as well as tending to produce similar fits, we observed enough instances 

where the fits were very different and for this reason both were retained in the default set. This is 

supported by our first simulation study that showed you can have very low coverage for data 

generated by each of these distributions, when fitted with each other (Figure 14), and also by the fact 

that these distributions differ substantially when considered using a Cullen-Frey plot, which shows a 

distribution’s kurtosis (a numerical measure of ‘peakedness’) as a function of its skewness (Figure 34).  
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Figure 34. Cullen-Frey plot of four distributions used in SSD modelling together with special cases of the Burr 

III distribution. The plot shows a distribution’s kurtosis (a numerical measure of ‘peakedness’) as a function 

of its skewness. Empirical {skewness, kurtosis} pairs for benchmark data sets are also indicated (solid red 

circles). 

It is evident from Figure 34 that the log-normal and log-logistic distributions cover different parts of 

the skewness-kurtosis plane and for this reason, both have been included in the default distribution 

set.  However, at this point in time, we recommend that, of the two mixtures currently implemented 

in ssdtools,only the log-normal-log-normal mixture be included in the default set. While further 

investigation into a range of mixtures (including mixtures composed of different statistical 

distributions, such as the log-normal and log-logistic) may be warranted, the sample sizes typically 

available for SSD modelling in practice would likely be insufficient to clearly differentiate between 

alternative mixtures. We have therefore chosen to use the mixture of log-normals by virtue of the 

simplicity and mathematical tractability of this distribution. Figure 34 also clearly shows that 

skewness-kurtosis profile lines of the ‘standard’ distributions considered are bounded by the profile 

lines of the special cases of the Burr III distribution – again suggesting the Burr III distribution can 

model a wide variety of both ‘standard’ and ‘non-standard’ distributional forms. Perhaps more 

intriguing, and something for which we currently have no explanation, is the way in which the points 

corresponding to actual benchmark toxicity data sets (available in ssddata) lie almost perfectly on 

the Burr III (k=0.01) profile line. It is tempting, if not somewhat fanciful, to conjecture that this 

observation provides evidence of the existence of a fundamental SSD in ecotoxicology. 



We see merit in including distributions that are routinely used in ecotoxicology as this is likely to 

encourage broader uptake of model-averaging methods and harmonisation of approaches across 

different jurisdictions. However, including distributions which suffer from convergence and boundary 

issues may pose a problem in model averaging, as the fitted candidate set will not be consistent among 

analyses. It seems clear that until convergence issues are resolved, the Gompertz distribution cannot 

be considered in the recommended set of candidate distributions. Convergence issues with the 

Weibull distribution have now been resolved (see above), and this distribution can therefore be 

considered in the default set. Given the Weibull distribution is one of the few two parameter 

distributions able to model negatively skewed data its inclusion is clearly warranted.   

The long history of use of the Burr III in SSD modelling in Australia along with the high flexibility 

associated with this distribution which can cover a large portion of the skewness-kurtosis space (Figure 

34) means that inclusion of the Burr III distribution in the candidate model average set would be 

desirable. As discussed above, there remain unresolved issues associated with the use of limiting 

forms of the Burr III distribution in the context of model averaging. While our simulations show that 

this behaviour may be able to be accommodated in a model averaging context providing these limiting 

distributions form part of the model set (see Section 4.4.1, Sensitivity and numerical stability issues), 

there are several reasons not to include the inverse Pareto (see Section 4.4.2, one of these two limiting 

forms) as a distribution in its own right in the candidate set. For these reasons, it seems best to exclude 

the Burr III from the recommended candidate set of distributions for the time being. Further work 

would be required to understand how best to accommodate the Burr III into model averaging, given 

its boundary condition behaviour.  

With these considerations, this leaves the log-normal, log-logistic, Gamma (the current default set) 

plus the log-Gumbel (inverse Weibull), Weibull and log-normal-log-normal mixture in the potential 

candidate set. We explored the outcome on our simulation results of restricting the candidate set to 

these six distributions, compared to our original analysis using “all” of those available in the TMB

version of ssdtools. We found that the results (at least for Simulation Study 1) were similar to using 

all of the available distributions, with only very marginal increases in bias and loss of coverage (see 

Appendix I: Additional analyses assessing the recommended distribution set ). Even under the worst-

case scenario based on data simulated using a Burr III distribution (which is not in the recommended 

set), the recommended set performs reasonably well. Overall, it appears that the recommended 

candidate set of distributions is sufficiently large to provide reasonable results for a wide range of data 

shapes, whilst ensuring that only numerically stable and defensible distributions are retained.  

Based on the results of our comprehensive testing and analysis and in view of the foregoing discussion, 

we make the following major recommendations: 

1. Software 

That A

 a
d
e

ustralian-New Zealand and Canadian jurisdictions: 

dopt the R-package ssdtools (and its on-line implementation shiny ssdtools) as the 
efault software tool for fitting SSDs to toxicity data for the purpose of deriving predicted no 
ffects concentration of chemicals in natural aquatic environments. 
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2. Default distribution set 

3. Implementation 

4. Periodic review and on-going collaboration 

That A

  
 
 
 

That A

  
 
 
 
 

B. That Australian-New Zealand and Canadian jurisdictions: 

 agree on a default set of distributions to use with ssdtools whether it be those identified 

in Recommendation 2A above or some other set as may be defined from time to time. 

A. The default list of candidate distributions in ssdtools should be comprised of the following 
distributions: 

1. The log-normal distribution; 
2. The log-logistic distribution; 
3. The gamma distribution; 
4. The inverse Weibull (log-Gumbel) distribution; 
5. The Weibull distribution; 
6. The mixture of two log-normal distributions 
ustralian-New Zealand and Canadian jurisdictions: 

Australian-New Zealand and Canadian jurisdictions agree to establish a
framework to continue the R&D collaboration on SSD modelling between the two
countries that has been initiated by this project. This framework should also
provide oversight of periodic reviews, technical evaluations, and resolution of
end-user issues.
ustralian-New Zealand: 

encourage and facilitate an expeditious transition to ssdtools and the model averaging
method. A period of overlap may be required whereby the results of either Burrlioz or
ssdtools can be used and reported. In pursuit of this objective, it is further recommended
that the responsible government departments in Australia and New Zealand provide support
for education and training initiatives associated with the use of model averaging, ssdtools
and the R computing environment. 
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Appendix A: Detailed task list

Category Task Software
Ranked 

Priority 

(CAN)

Priority(Aus

/Can)
More information

Statistical Investigations

Distribution-fitting
1a Assess numerical instability issues with Burr III and decide 

whether to include Burr III

ssdtools 1 Aus Numerical stability issues: All of the candidate distributions in ssd tools are ‘well-behaved’ with respect to parameter estimation with the 

exception of the Burr III distribution which often fails to converge to a unique solution. This is thought to be primarily a function of the very 

small sample sizes used in ecotoxicology, although further work is needed to fully understand issues of multicollinearity among parameter 

estimates and convergence issues.

The outcomes  will inform subsequent considerations as to whether the Burr III distribution is a useful inclusion in the suite of candidate 

SSDs. While the Burr family has proved to be very useful in the ecotox context over the last 20+ years and is the cornerstone of the 

Australian methodology, the justification for its continued use may be somewhat diminished by virtue of (i) on-going numerical issues; and 

(ii) the move to model-averaging using a selection of better ‘behaved’ distributions.

Distribution-fitting 1b (merged with 1a) ssdtools

Distribution-fitting 1c Determine convergence criteria ssdtools 1 Aus + Can Determine the criteria by which convergence will be tested: method used by fitdistplus or other.

Distribution-fitting 1d Identify benchmark datasets
1 Aus + Can Identify a suite of benchmark datasets that will serve as a reference standard for all SSD-fitting and evaluation. This is in keeping with the 

recommendation in Fox et al. (in prep. )

Distribution-fitting 1e  Evaluate SSD methodologies based on datasets

1 Aus + Can Fully explore, evaluate and document SSD methodologies (including estimation strategies, numerical stability issues, HCx estimation, 

confidence interval determination, identification of initial values for iterative parameter estimation strategies (e.g. maximum likelihood) and 

computational efficiency using the datasets in (d) and other simulated datasets.

Distribution-fitting 1f Refine mixture modelling with view to incorporating

ssdtools 2 Aus + Can Continue development and refinement of statistical mixture modelling (SMM) methodologies with a view to incorporating this capability as 

an option within the ssd tools shiny app. The statistical ramifications and requirements in terms of issues previously identified above will 

also be explored in the context of SMM.

Distribution-fitting 1g Investigations into Burr alternatives. E.g. ggLogis + others?ssdtools Aus

Sub-total

HCx and CI estimation 2a CI for HCx methods - alternatives to bootstrapping

2 Aus + Can 

(lower 

priority)

Investigate and document outcomes and recommendations associated with the ‘best’ methods of estimating an HCx (and FA) post-

distribution fitting. We would expect to address issues of invertability of the fitted cdf versus bootstrapping. Importantly, further research is 

required to undertake a comprehensive evaluation of methods of determining confidence intervals around the estimated HCx. Current 

strategies are based on either bootstrapping or the ‘delta’ method. Fox, Thorley and Etterson (USEPA) are currently exploring the potential of 

profile-likelihood based confidence intervals as a more robust and defensible strategy. 

inalization of default 

distributions
3a Finalize default distributions

1 Aus + Can Further consideration and justification of the default set of distributions (given this is the core feature of model averaging, and there have 

been some changes to the default set since the Nov workshop in BC). These considerations will be substantially informed by the outputs 

and outcomes of 1 and 2 above.

Statistical Sub-total

Software development

Functionality 4 Add individual model outputs to shiny apps
shinyssdtools done? Can Add output of individual model weight, HCx estimates, and CIs to the Shiny App. ECCC and Ontario use tables (similar to the below) in 

guideline documents but need to use R in order to populate. 

Functionality 5 Add functionality for french plots
shinyssdtools 1 Can Format the X axis so that the thousands separator is a space and not a decimal ex. 20 000 instead of 20,000. Make this option available in 

the Shiny App. 

Functionality 6 Add geom for censored data ssdtools 3 Can Allow species names and symbols to be added so the figure looks the same as without censored data. 

Tests 7a Tests
ssdtools 3 Can Develop a minimal set of structured tests that will be run daily to ensure that package is functioning properly and to alert the package 

maintainer of changes in dependent packages

Tests 7b Test all OS ssdtools 3 Can Develop tests to ensure package gives the same results across all operating systems

Extras 8 Add example code to analyse multiple datasets ssdtools 3 Can Add code to run multiple sets of data at the same time (in R package- not Shiny)

Extras 9 Add ability to choose colour and symbols in shinyssdtools

shinyssdtools 3 Can Ability to choose colour and symbols in Shiny App instead of done alphabetically and with colour sets. Historically for ECCC, “amphibian” is 

a yellow triangle, “invertebrate” is a red circle, “fish” a blue square, and “algae/plant” a green triangle. Some people would like to maintain 

these shapes and colours- however with a proper legend this shouldn’t be a huge issue. French and English versions of the SSD usually have 

different symbols using ssdtools due to translations and therefore are not exactly the same. 
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Appendix B: Inverse Pareto distribution
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Appendix C: Unbiased estimation for the inverse Pareto distribution

David R. Fox 

PREAMBLE 

Simulation studies have confirmed that the actual percent coverage for xHC confidence intervals 

based on the inverse Pareto distribution decreases as the sample size decreases. This is true for both 

the Burrlioz bootstrapped CIs and for the newly developed alternative method due to Fox 

(2021). For example, we observed that the actual coverage of 95% confidence intervals generated 

from a specified inverse Pareto distribution was very close to the nominal 95% (typically ~ 94%) for 

n=100. However, this coverage decreased uniformly with decreasing sample size whereby for n=8

the actual coverage was about 80%. The reasons for this are explained next. 

BIASED CONFIDENCE INTERVALS 

The source of the problem described above is somewhat unique to the Pareto / inverse Pareto

distributions by virtue of their constrained ranges (which are functions of the scale parameter). 

PARETO DISTRIBUTION

Let Y have the Pareto  ,  distribution given by Equation C.1. 

   1; ,  ;  ;  , 0Yf y y y         (C.1) 

INVERSE PARETO DISTRIBUTION

If Y has the distribution given by Equation C.1, then the distribution of
1

X
Y

  has the inverse Pareto

distribution given by Equation C.2. 

  1 1
; , =  ;  0 ;  , 0Xg x x x     


    (C.2) 

Thus, we see that Y is bounded below by and X is bounded above by
1


. 
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PARAMETER ESTIMATION 

It is well known (e.g. Malik, 1970) that the MLEs for  and   are: 

 ˆ min iY  (C.3a) 

1

1

ˆ ln
g

Y



  

   
  

(C.3b) 

where  g  is the geometric mean of the Y-data i.e.

1

1

n n

i
i

g y


 
  
 
  . Furthermore, ˆˆ  and   are 

statistically independent. 

SAMPLING DISTRIBUTIONS OF̂AND ̂

We next develop expressions for the sampling distributions of the MLEs for  and   . 

____
̂

Let n   ; 1r n   and 
1

ˆ
ˆ




   . Then, it can be shown that: 

 
 

ˆ1ˆ ˆ ˆ ;  0
r

rg e
r


      


(C.4) 

Equation C.4 is recognised as the  gamma ,r  pdf and therefore̂has an inverse gamma 

distribution: 

 
 

1

ˆ1
ˆ ˆ ;  0

ˆ

rr

h e
r






 



 

  
  

(C.5) 

Using standard results for the inverse gamma distribution we have: 

 ˆ
1r


 


 for 1 2r n    and hence:  

 ˆ   ;  2
2

n
n

n


  


(C.6) 
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Equation C.6 shows that the estimator̂ given by Equation C.3b is a biased estimator of since

 ̂    although clearly the modified estimator: 

2
ˆ ˆ

n

n
  

 (C.7) 

Is unbiased for . Furthermore, since   ˆlim
n

 


  , the bias in̂ becomes negligible for ‘large’ n.

Additionally, it is evident from Equation C.6 that̂ always over-estimates the true value, . For 

example, with 8n   this bias is +33%. 

OTHER USEFUL PROPERTIES

It is also readily shown that: 

 
   

2

2
ˆ

1 2
Var

r r


 

 
 for 2  3r n   . 

and so: 

 
1

ˆ
2 3

n
SE

n n


 

 

Our estimate of this standard error is thus: 

  ˆ 1
ˆ

2 3

2 1
ˆ           = 

2 3

n
SE

n n

n n

n n n









 



 

That is: 

  ˆ
ˆ

3
SE

n


 


(C.8) 

Note, we use̂  given by Equation C.3b in Equation C.8. 

____

̂

For ̂  it can be shown that ̂ has the Pareto distribution given by Equation C.9. 
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   1ˆ ˆ ˆ  ;  h        (C.9) 

It is immediately evident from Equation C.9 that ̂  is a biased estimator of  since ̂  which 

implies ̂      i.e., ̂  always over-estimates . The magnitude of this bias is readily 

established: 

1
for  1    1  

ˆ
1

for 1                      
1

n
n

n

  




 



         

   
 

Thus, for
1

n
   : 

ˆ   =  
1 1

n

n

 
  

 
     

(C.10) 

Two things are obvious from Equation C.10: 

1. The bias in ̂  is a function of both the sample size, n and the shape parameter, . 

2. As n  , 0bias  . 

As was done for̂ , we can modify ̂ to obtain an unbiased estimator for . Hence: 

1 1ˆ ˆ ˆ  =  1
n

n n


  

 
  
  

 
(C.11) 

Now,  (the true parameter value) is unknown and so we replace in Equation C.11 with our 

unbiased estimator, ̂
 (Equation C.7). Thus: 

1ˆ ˆ 1
ˆn

 






 
  

 

but,  
2

ˆ ˆ ˆ2
n

n n n
n

   
    and so: 

 
1ˆ ˆ 1

ˆ2n
 




 
  

 
(C.12) 
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where ˆˆ  and    are the MLEs given by Equations C.3b and C.3a respectively. 

OTHER USEFUL PROPERTIES

It is readily established that: 

   

2

2

2
for  2   

ˆ
2

for  2   
1 2

n

Var
n








 


   

    
   
  

Now, for
2

n


 : 

   

2

2
ˆ

1 2

n
Var

n n




 
     

And so: 

   
ˆ

1 2

n
SE

n n

 


 
      

(C.13) 

Replacing  and    in Equation C.13 with their unbiased estimators, our estimate of ˆSE  
 

becomes: 



   
ˆ ˆˆ
ˆ ˆ1 2

n
SE

n n

 


 

 

 
      

and thus: 

 ˆ 1 2ˆ   ;  
ˆ ˆ2

1
ˆ

SE n
n

n




 



     


(C.14) 

where ˆˆ  and    are the MLEs given by Equations C.3b and C.3a respectively. 
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THE CASE OF SHRINKING COVERAGE 

As noted earlier, the actual coverage of confidence intervals for  and   decreases as 0n  . 

Burrlioz uses non-parametric bootstrapping to generate its confidence intervals for an xHC . 

Briefly, the procedure is as follows: 

From the original sample:  1, 2 , , n XX X X  …  obtain the ith bootstrap sample by randomly 

sampling (with replacement) n values from X  . We denote this bootstrapped sample as 

 1 2, , ,i i niW W W…  with   ,ij XW i j  . The scale parameter estimated from the ith bootstrap 

sample is 
 

1 1
min

max
i ij

j
ij ij

j

Y
W W


  

   
  

  . Thus ˆ
i i   bootstrap samples where ̂  is the 

estimate of  from X . 

AN ALTERNATIVE (RAPID) METHOD

Instead of resampling from the data (non-parameteric bootstrapping) or from data generated from 

the inverse Pareto distribution whose parameters have been estimated from the sample, X

(parametric bootstrapping), an alternative approach is to generate ,  pairs from their respective 

sampling distributions (Equations C.5 and C.9). For each simulated pair ,j j  an pHC value is 

computed using Equation C.15. 

1

p

p








 (C.15) 

To implement this strategy, the parameters in Equations C.5 and C.9 must be estimated from the 

sample. We have established that the MLEs for both  and   are biased and thus any data 

generated from distributions using these parameter estimates will also be biased. To counter this 

bias (and hence ‘corruption’ of the assumed confidence), we use the unbiased estimators given by 

Equations C.7 and C.12 in Equation C.15. 
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Appendix D: R-code for fitting mixtures

Joseph L Thorley, Carl Schwarz 

Lnorm_lnorm 

TBM code 

Type ll_lnorm_lnorm(objective_function<Type>* obj) // normal with parameters mu an
d log(sigma)
{

// Data
DATA_VECTOR( left  );  // left and right values
DATA_VECTOR( right );
DATA_VECTOR( weight);  // weight

// The order of these parameter statements determines the order of the estimates 
in the vector of parameters

PARAMETER( meanlog1 ); // first distribution
PARAMETER( log_sdlog1    );
PARAMETER( meanlog2 ); // second distribution
PARAMETER( log_sdlog2    );
PARAMETER( logit_pmix         );  // mixing proportion

  Type sdlog1 = exp(log_sdlog1);    // Convert to the [0,Inf] range
  Type sdlog2 = exp(log_sdlog2);
  Type pmix      = 1/(1+exp(-logit_pmix));// Convert to the [0,1] range

  Type nll = 0;  // negative log-likelihood
  int n_data    = left.size(); // number of data values
  Type pleft;    // probability that concentration < left(i)  used for censored da
ta
  Type pright;   // probability that concentration < right(i) used for censored da
ta

//vector<Type> mynll(n_data); //(for debugging)

// Probability of data conditional on parameter values for uncensored data
// pdf of log(normal) obtained from pdf(normal) using the standard transformatio

n theory
for( int i=0; i<n_data; i++){

if(left(i) == right(i)){   // uncensored values
if(left(i)>0){

        nll -= weight(i)*(log(pmix * dnorm(log(left(i)), meanlog1, sdlog1, false )
/left(i) +
                             (1-pmix) * dnorm(log(left(i)), meanlog2, sdlog2, fals
e )/left(i)));   // log likelihood for uncensored values
       };
     };

if(left(i) < right(i)){    // censored values; no builtin function so we code 
the cdf directly
        pleft = 0;

if(left(i)>0){ pleft=pmix * pnorm(log(left(i)), meanlog1, sdlog1)+
                            (1-pmix) * pnorm(log(left(i)), meanlog2, sdlog2);};
        pright=pmix * pnorm(log(right(i)), meanlog1, sdlog1)+
                                       (1-pmix)* pnorm(log(right(i)), meanlog2, sd
log2);
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        nll -= weight(i)*log(pright-pleft);
     };
  };

ADREPORT(sdlog1);
REPORT  (sdlog1);
ADREPORT(sdlog2);
REPORT  (sdlog2);
ADREPORT(pmix);
REPORT  (pmix);

  return nll;
}

Exported functions 

ssd_plnorm_lnorm: Probability Distribution Function for Log-Normal/Log-Normal Mixture 
Distribution 

ssd_plnorm_lnorm <- function(q, meanlog1 = 0, sdlog1 = 1,
meanlog2 = 1, sdlog2 = 1, pmix = 0.5, 
lower.tail = TRUE, log.p = FALSE) {

pdist("lnorm_lnorm", q = q, meanlog1 = meanlog1, sdlog1 = sdlog1,
meanlog2 = meanlog2, sdlog2 = sdlog2, pmix = pmix,
lower.tail = lower.tail, log.p = log.p)

}

ssd_qlnorm_lnorm: Cumulative Distribution Function for Log-Normal/Log-Normal Mixture 
Distribution 

ssd_qlnorm_lnorm <- function(p, meanlog1 = 0, sdlog1 = 1,
meanlog2 = 1, sdlog2 = 1, pmix = 0.5, 
lower.tail = TRUE, log.p = FALSE) {

qdist("lnorm_lnorm", p = p, meanlog1 = meanlog1, sdlog1 = sdlog1,
meanlog2 = meanlog2, sdlog2 = sdlog2, pmix = pmix,
lower.tail = lower.tail, log.p = log.p)

}

ssd_rlnorm_lnorm: Random Generation for Log-Normal/Log-Normal Mixture Distribution 

ssd_rlnorm_lnorm <- function(n, meanlog1 = 0, sdlog1 = 1,
meanlog2 = 1, sdlog2 = 1, pmix = 0.5, chk = TRUE) {

rdist("lnorm_lnorm", n = n, meanlog1 = meanlog1, sdlog1 = sdlog1,
meanlog2 = meanlog2, sdlog2 = sdlog2, pmix = pmix, chk = chk)

}

Other supporting functions 

slnorm_lnorm <- function(data, pars = NULL) {
if(!is.null(pars)) return(pars)

  x <- mean_weighted_values(data)

  x <- sort(x)
  n <- length(x)
  n2 <- floor(n / 2)
  x1 <- x[1:n2]
  x2 <- x[(n2+1):n]
  s1 <- slnorm(data.frame(left = x1, right = x1, weight = 1))
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  s2 <- slnorm(data.frame(left = x2, right = x2, weight = 1))
names(s1) <- paste0(names(s1), "1")
names(s2) <- paste0(names(s2), "2")

  logit_pmix <- list(logit_pmix = 0)
c(s1, s2, logit_pmix)

}

blnorm_lnorm <- function(x, min_pmix, ...) {
list(lower = list(meanlog1 = -Inf, log_sdlog1 = -Inf, meanlog2 = -Inf, log_sdlog

2 = -Inf, logit_pmix = logit(min_pmix)),
upper = list(meanlog1 = Inf, log_sdlog1 = Inf, meanlog2 = Inf, log_sdlog2 =

Inf, logit_pmix = logit(1 - min_pmix)))
}

plnorm_lnorm_ssd <- function(q, meanlog1, sdlog1, meanlog2, sdlog2, pmix) {
if(sdlog1 <= 0 || sdlog2 <= 0 || pmix <= 0 || pmix >= 1) {

return(NaN)
  }
  pmix * plnorm_ssd(q, meanlog1, sdlog1) + (1 - pmix) * plnorm_ssd(q, meanlog2, sd
log2)
}

qlnorm_lnorm_ssd <- function(p, meanlog1, sdlog1, meanlog2, sdlog2, pmix) {
if(sdlog1 <= 0 || sdlog2 <= 0 || pmix <= 0 || pmix >= 1) {

return(NaN)
  }

  f <- function(x) {
plnorm_lnorm_ssd(x, meanlog1, sdlog1, meanlog2, sdlog2, pmix) - p

  }
  stats::uniroot(f, lower = 0, upper = 10, extendInt = "yes")$root
}

rlnorm_lnorm_ssd <- function(n, meanlog1, sdlog1, meanlog2, sdlog2, pmix) {
if(sdlog1 <= 0 || sdlog2 <= 0 || pmix <= 0 || pmix >= 1) {

return(rep(NaN, n))
  }
  dist <- stats::rbinom(n, 1, pmix)
  dist <- as.logical(dist)
  x <- rep(NA_real_, n)
  x[dist] <- rlnorm_ssd(sum(dist), meanlog = meanlog1, sdlog = sdlog1)
  x[!dist] <- rlnorm_ssd(sum(!dist), meanlog = meanlog2, sdlog = sdlog2)
  x
}

llogis_llogis 

TMB code 

Type ll_llogis_llogis(objective_function<Type>* obj) // normal with parameters mu 
and log(sigma)
{

// Data
DATA_VECTOR( left  );  // left and right values
DATA_VECTOR( right );
DATA_VECTOR( weight);  // weight

// The order of these parameter statements determines the order of the estimates 
in the vector of parameters
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PARAMETER( locationlog1 ); // first distribution
PARAMETER( log_scalelog1    );
PARAMETER( locationlog2 ); // second distribution
PARAMETER( log_scalelog2    );
PARAMETER( logit_pmix         );  // mixing proportion

  Type scalelog1 = exp(log_scalelog1);    // Convert to the [0,Inf] range
  Type scalelog2 = exp(log_scalelog2);
  Type pmix      = 1/(1+exp(-logit_pmix));// Convert to the [0,1] range

  Type nll = 0;  // negative log-likelihood
  int n_data    = left.size(); // number of data values
  Type pleft;    // probability that concentration < left(i)  used for censored da
ta
  Type pright;   // probability that concentration < right(i) used for censored da
ta

//vector<Type> mynll(n_data); //(for debugging)

// Probability of data conditional on parameter values for uncensored data
// pdf of log(normal) obtained from pdf(normal) using the standard transformatio

n theory
for( int i=0; i<n_data; i++){

if(left(i) == right(i)){   // uncensored values
if(left(i)>0){

        nll -= weight(i)*(log(   pmix * dlogis( log(left(i)), locationlog1, scalel
og1, false )/left(i) +
                             (1-pmix) * dlogis( log(left(i)), locationlog2, scalel
og2, false )/left(i)));   // log likelihood for uncensored values
       };
     };

if(left(i) < right(i)){    // censored values; no builtin function so we code 
the cdf directly
        pleft = 0;

if(left(i)>0){ pleft=pmix   * 1/(1+exp(-(log(left(i))-locationlog1)/scalel
og1))+
                            (1-pmix)* 1/(1+exp(-(log(left(i))-locationlog2)/scalel
og2));};
        pright=pmix    * 1/(1+exp(-(log(right(i))-locationlog1)/scalelog1))+
                                       (1-pmix)* 1/(1+exp(-(log(right(i))-location
log2)/scalelog2));
        nll -= weight(i)*log(pright-pleft);
     };

// mynll(i) = nll;  // for debugging
  };

ADREPORT(scalelog1);
REPORT  (scalelog1);
ADREPORT(scalelog2);
REPORT  (scalelog2);
ADREPORT(pmix);
REPORT  (pmix);

//REPORT( mynll);  //for debugging
  return nll;
}
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Exported functions 

ssd_pllogis_llogis: Cumulative Distribution Function for Log-Logistic/Log-Logistic Mixture 
Distribution 

ssd_pllogis_llogis <- function(q, locationlog1 = 0, scalelog1 = 1,
locationlog2 = 1, scalelog2 = 1, pmix = 0.5, 
lower.tail = TRUE, log.p = FALSE) {

pdist("logis_logis", q = q, location1 = locationlog1, scale1 = scalelog1,
location2 = locationlog2, scale2 = scalelog2, pmix = pmix,
lower.tail = lower.tail, log.p = log.p, .lgt = TRUE)

}

ssd_qllogis_llogis: Cumulative Distribution Function for Log-Logistic/Log-Logistic Mixture 
Distribution 

ssd_qllogis_llogis <- function(p, locationlog1 = 0, scalelog1 = 1,
locationlog2 = 1, scalelog2 = 1, pmix = 0.5, 
lower.tail = TRUE, log.p = FALSE) {

qdist("logis_logis", p = p, location1 = locationlog1, scale1 = scalelog1,
location2 = locationlog2, scale2 = scalelog2, pmix = pmix,
lower.tail = lower.tail, log.p = log.p, .lgt = TRUE)

}

ssd_rllogis_llogis: Random Generation for Log-Logistic/Log-Logistic Mixture Distribution 

ssd_rllogis_llogis <- function(n, locationlog1 = 0, scalelog1 = 1,
locationlog2 = 1, scalelog2 = 1, pmix = 0.5, chk = TRUE

) {
rdist("logis_logis", n = n, location1 = locationlog1, scale1 = scalelog1,

location2 = locationlog2, scale2 = scalelog2, pmix = pmix, .lgt = TRUE, ch
k = chk)
}

Other supporting functions 

sllogis_llogis <- function(data, pars = NULL) {
if(!is.null(pars)) return(pars)

  x <- mean_weighted_values(data)
  x <- sort(x)
  n <- length(x)
  n2 <- floor(n / 2)
  x1 <- x[1:n2]
  x2 <- x[(n2+1):n]
  s1 <- sllogis(data.frame(left = x1, right = x1, weight = 1))
  s2 <- sllogis(data.frame(left = x2, right = x2, weight = 1))

names(s1) <- paste0(names(s1), "1")
names(s2) <- paste0(names(s2), "2")

  logit_pmix <- list(logit_pmix = 0)
c(s1, s2, logit_pmix)

}

bllogis_llogis <- function(x, min_pmix, ...) {
list(lower = list(locationlog1 = -Inf, log_scalelog1 = -Inf, locationlog2 = -Inf

, log_scalelog2 = -Inf, logit_pmix = logit(min_pmix)),
upper = list(locationlog1 = Inf, log_scalelog1 = Inf, locationlog2 = Inf, l
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og_scalelog2 = Inf, logit_pmix = logit(1 - min_pmix)))
}

plogis_logis_ssd <- function(q, location1, scale1, location2, scale2, pmix) {
if(scale1 <= 0 || scale2 <= 0 || pmix <= 0 || pmix >= 1) {

return(NaN)
  }
  pmix * plogis_ssd(q, location1, scale1) + (1 - pmix) * plogis_ssd(q, location2, 
scale2)
}

qlogis_logis_ssd <- function(p, location1, scale1, location2, scale2, pmix) {
if(scale1 <= 0 || scale2 <= 0 || pmix <= 0 || pmix >= 1) {

return(NaN)
  }
  f <- function(x) {

plogis_logis_ssd(x, location1, scale1, location2, scale2, pmix) - p
  }
  stats::uniroot(f, lower = 0, upper = 10, extendInt = "yes")$root
}

rlogis_logis_ssd <- function(n, location1, scale1, location2, scale2, pmix) {
if(scale1 <= 0 || scale2 <= 0 || pmix <= 0 || pmix >= 1) {

return(rep(NaN, n))
  }
  dist <- stats::rbinom(n, 1, pmix)
  dist <- as.logical(dist)
  x <- rep(NA_real_, n)
  x[dist] <- rlogis_ssd(sum(dist), location = location1, scale = scale1)
  x[!dist] <- rlogis_ssd(sum(!dist), location = location2, scale = scale2)
  x
}
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Appendix E: L-Moment estimators for the Burr III distribution

David R. Fox 

Introduction 

 Brief review of use of Burr distributions for SSDs including development of Burrlioz

software 

 Characteristics and properties of Burr distributions – recap known statistical results 

 Estimation strategies – issues with maximum likelihood 

L-Moments 

The concept of L-moments was introduced by Hosking (1990) and they have found to be 

particularly useful for describing probability distributions. Unlike conventional moments (which 

are also widely used to describe and fit probability distributions), L-moments have several 

unique properties. Among these is the fact that any distribution with finite mean is uniquely 

determined by its L-moments.  

Although the use of conventional moments for estimating the parameters of a probability 

distribution (the so-called method-of-moments or MoM estimation) has a long history, their use 

in this context has largely given way to likelihood-based approaches (maximum likelihood 

estimates or MLEs).  

Maximum likelihood estimators are generally more accurate than conventional MoM estimators 

and they enjoy several desirable statistical properties not shared by MoM estimators such as 

asymptotic convergence to the MVUBE and asymptotically normality. Furthermore, for some 

monotonic function ( )g  , the estimate  ˆg  is the mle of  g  where̂ is the mle of . 

Advantages of L-moment estimators are: 

 They are more robust than conventional moments to outliers in the data; 

 they enable more secure inferences to be made from small samples about an underlying 

probability distribution;  

 they can yield more efficient parameter estimates than maximum likelihood estimates; 

 they characterise a wider range of distributions than is possible with conventional 

moments; 

 small sample bias of L-moment estimators is generally less than conventional moment-

based estimators;  

 L-moment estimators can usually be used when MLEs are either unavailable or difficult 

to compute; and 

 L-moments can be used to specify a distribution even when some of its conventional 

moments do not exist. 

Since their introduction 30 years ago, L-moments have been widely used by hydrologists for flood-

frequency analyses (Kjeldsen et al. 2002; Kroll and Vogel, 2002; Lim and Lye, 2003). 
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DEFINITION AND PROPERTIES OF L-MOMENTS

The following derivation largely follows that given by Hosking (1990).  

Suppose X is a real-valued random variable with cumulative distribution function (cdf) ( )XF x

and probability density function (pdf) ( )Xf x . Let the rth order statistic from a sample of size n

 1 2, , , nX X X… be denoted as :r nX . The L-moments of X are defined as: 
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where  :r k rE X  denotes the expected value of the indicated order statistic and 
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Using Equation 1 it is readily established that the first four L-moments are: 
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 (E.3) 

As with conventional moments, the first four L-moments of a distribution are measures of 

location, dispersion, skewness and kurtosis respectively and that 1 X   (the conventional 

mean of X). 

Hosking (2006) showed that the characterisation of a distribution by its L-moments is 

nonredundant, meaning that if one L-moment is dropped from the set the distribution cannot be 

determined from the remaining L-moments. Hosking (2006) further suggested that the 

information contained in the rth L-moment is maximally independent of the information given in 

the first r-1 L-moments thereby making the L-moments particularly suited as summary statistics 

of a distribution. 

The L-moment ratios 2   ( 3,4, )r r r    … are dimensionless quantities that will also prove 

useful in characterising probability distributions and are more readily interpreted than their 

conventional moment counterparts by virtue of the fact 1,   3,4,r r   …  . While (the 

conventional measure of kurtosis) has no unique interpretation, it is invariably associated with a 

distribution’s ‘peakedness’. Hosking (1990) notes that the L-kurtosis, 4 is equally difficult to 

interpret uniquely and is best thought of as a measure like but giving less weight to the 

extreme tails of the distribution. 

L-MOMENTS SAMPLE ESTIMATES

Unbiased estimation of the population L-moments is readily achieved using the sample L-

moments, rl  defined as follows: 
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where 1: 2: :n n n nx x x  …  is the ordered sample. 

Using Equation E.4 we obtain the following expressions for the first four sample L-moments: 
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We next develop explicit expressions for the population L-moments of the Burr III family of 

densities. 

 L-Moments of the Burr III distribution 

The cdf and pdf for the Burr III distribution are given respectively by Equations 8 and 9. 
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From Equations (1) and (2) we have: 
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where 
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Letting I be the integral in Equation E.9, we have 
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and making the substitution 
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where  1 1 ;  1   and  B ,k j
c c

       is the standard beta function.  
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Substituting Equation 14 back into Equation 10 we have: 
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Using Equation E.13, L-moment estimation of the parameters , ,b c k for the distribution given by 

Equation E.7 is simply a matter of setting ˆ  ,  1,2,3r rl r    and solving the resulting system of 3 

non-linear Equations. Selecting suitable initial estimates for this iterative procedure is facilitated by a 

preliminary inspection of the L-moment ratios as described in the following Section. 

L-moment parameter estimation for the Burr III distribution 

As noted earlier, the L-moment ratios r are dimensionless quantities which makes them useful for 

characterising and comparing distributions. A common tool used for this purpose is an L-moment 

ratio plot in which values of the L-moment kurtosis are plotted on the vertical scale and values of the 

L-moment skewness on the horizontal scale. For the Burr III distribution given by Equation E.7, this L-

moment ratio plot is independent of the parameter b. It is therefore possible to estimate c and k

directly from contour plots of 3( , )c k and 4( , )c k by finding ˆˆ,c k such that 3
ˆˆ( , )c k and 4

ˆˆ( , )c k
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match their sample values. The estimate b̂ of the parameter b is readily estimated once  ˆˆ,c k have 

been determined. However, using the third and fourth moments in this way does not guarantee 

 2 2
ˆ ˆˆ, ,b c k l  . For the 3-parameter Burr distribution we believe it is more important to match the 

first three moments rather than L-moments 1,3, and 4. This is readily achieved with a slight 

modification to the procedure just described. 

INITIAL ESTIMATES FOR L-MOMENT MATCHING

The L-moment ratios r were defined by Hosking (1990) for 3, 4,r  … . We introduce a new quantity 

LCV which is similar to the conventional moment-based coefficient of variation. 

2

1

LCV



 (E.14) 

As with the regular coefficient of variation, LCV is a dimensionless, scaled measure of dispersion.  

Initial estimates of c and k can be found by finding the ,c k  pair for which LCV and 3 are roughly 

equal to their sample values. The procedure is illustrated with the use of 2 examples. 

Example 1: SSD-fitting to lead in marine waters data. 

The data in Table E1 are concentrations (microgram per litre) of lead found in a sample of 16 marine 

species. 

The first four sample L-moments for these data are 232.406,164.71,95.872,53.827  from which 

it is readily established that the sample values of LCV and 3 are 0.709 and 0.582 respectively. 

Plots of LCV and 3 as functions of c and k are shown in Figures 1(a) and 1(b). Superimposing these 2 

plots we find that an approximate solution for ,c k is found at the interSection of the 0.709 

contour of Figure 1(a) and the 0.581 contour of Figure 1E(b) (these contour lines were determined 

by the plotting software) (Figure E2). 
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Table E1. Concentrations (micrograms per litre) of lead in marine species (Data courtesy Dr. Graeme Batley, 

CSIRO). 

concen Name Species

251 Dunaliella tertiolecta Green alga

1234 Phaeodactylum tricornutum Diatom

29.4 Skeletonema costatum Diatom

11.9 Champia parvula Macroalga

397 Tisbe battagliai Copepod

48 Strongylocentrus pupuratus Sea urchin

119 Paracentrotus lividus Sea urchin

250 Dendraster excentricus Sea urchin

10 Heliocideris tubiculata Sea urchin

7 Americamysis bahia Mysid

51 Mytilus galloprovincialis Mussel

9 Mytilus trossolus Mussel

931 Crassotrea gigas Oyster

95.9 Neanthes arenaceodantata Polychaete

230 Cyprinodon variegatus Fish

44.3 Atherinops affinis Fish

From Figure E2, we obtain the approximate solution ˆ 2c  and ˆ 0.2k  . The L-moment estimator of 

ˆ 463.7b  is readily found using Equation E.15. 

1ˆ
1 1ˆ ˆ ,1
ˆ ˆ

l
b

k B k
c c


 

  
 

(E.15) 

With these initial values of , ,b c k convergence is rapid and yields the L-moment estimators of

 ˆ ˆˆ479.396; 2.006; 0.192b c k   . 
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Figure E1. Plots of (a) LCV and (b) τ3 for lead data as a function of c and k in Equation 9.

Figure E2. Figures 1(a) and 1(b) overlaid on single plot

A plot of the empirical and fitted cdfs is shown in Figure E3. 
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Figure E3. Comparison of fitted (red curve) and empirical (blue curve) cdfs for Pb in marine waters example.

Example 2: SSD-fitting to Metolachlor in freshwater. 
The data in Table E2 are concentrations (microgram per litre) of metolachlor found in a sample of 21 

freshwater species. 

Table E2. Summary of single chronic toxicity values, all species used to derive default guideline values for 

metolachlor in freshwater (Source: ANZG, 2020). 

Taxonomic group 
(Phylum) 

Species Life stage Duration 
(d) 

Toxicity 
measure a

Test 
endpoint 

Final toxicity 
value (µg/L) 

Diatom 
(Bacillariophyta) 

Achnanthidium 
minutissimum d

Exponential 
growth phase 

4 Chronic 
EC10 

Cell density 6 528 

Blue–green alga 
(Cyanobacteria) 

Anabaena 
flosaquae 

Not stated 5 Chronic 
EC50 

Biomass 
yield, growth 
rate, AUC c

240 

Macrophyte 
(Tracheophyta) 

Ceratophyllum 
demersum d

Not stated 14 Chronic 
EC50 

Wet weight 14 

Green alga 
(Chlorophyta) 

Chlamydomonas 
reinhardtii d

Not stated 4 Chronic 
EC50 

Chlorophyll-a 
content 

228 

Green alga 
(Chlorophyta) 

Chlorella 
pyrenoidosa d

Exponential 
growth phase 

4 Chronic 
NOEC 

Chlorophyll-a 
content 

1 

Diatom 
(Bacillariophyta) 

Craticula 
accomoda d

Exponential 
growth phase 

4 Chronic 
EC10 

Chlorophyll-a 
content 

4 016 

Diatom 
(Bacillariophyta) 

Cyclotella 
meneghiniana d

Exponential 
growth phase 

4 Chronic 
EC10 

Cell density 925 

Macroinvertebrate 
(Arthropoda) 

Daphnia magna <24 hour old 21 Chronic 
EC10 

Young per 
female 

224 

Macrophyte 
(Tracheophyta) 

Elodea canadensis 
d

Not stated 14 Chronic 
EC50 

Wet weight 471 

500 1 10
3

 1.5 10
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Taxonomic group 
(Phylum) 

Species Life stage Duration 
(d) 

Toxicity 
measure a

Test 
endpoint 

Final toxicity 
value (µg/L) 

Diatom 
(Bacillariophyta) 

Encyonema 
silesiacum d

Exponential 
growth phase 

4 Chronic 
EC10 

Chlorophyll-a 
content 

1 048 

Diatom 
(Bacillariophyta) 

Fragilaria capucina
var vaucheriae d

Not stated 4 Chronic 
EC10 

Chlorophyll-a 
content

90 

Diatom 
(Bacillariophyta) 

Gomphonema 
gracile d

Exponential 
growth phase 

7 Chronic 
NOEC 

Live cell 
density 

1 

Diatom 
(Bacillariophyta) 

Gomphonema 
parvulum 

Exponential 
growth phase 

4 Chronic 
EC10 

Chlorophyll-a 
content 

6 384 

Macrophyte 
(Tracheophyta) 

Lemna gibba Stage 3 (3 
fronds/plants) 

14 Chronic 
NOEL 

Frond 
number 

8.4 

Diatom 
(Bacillariophyta) 

Mayamaea fossalis Exponential 
growth phase 

4 Chronic 
EC10 

Chlorophyll-a 
content 

863 

Macrophyte 
(Tracheophyta) 

Najas sp. Not stated 14 Chronic 
EC50 

Wet weight 48.4 

Diatom 
(Bacillariophyta) 

Navicula 
pelliculosa d

Not stated 5 Chronic 
EC50 

Biomass 
yield, growth 
rate, AUC c

76 

Fish (Chordata) Pimephales 
promelas 

Early life stage 35 Chronic 
LOEC 

Mortality 640 

Green alga 
(Chlorophyta) 

Pseudokirchneriella 
subcapitata b

Not stated 3 Chronic 
NOEC 

Cell density 27.4 

Green alga 
(Chlorophyta) 

Scenedesmus 
vacuolatus 

Exponential 
growth phase 

2 Chronic 
EC50 

Cell density 0.53 

Diatom 
(Bacillariophyta) 

Ulnaria ulna d Exponential 
growth phase 

4 Chronic 
EC10 

Chlorophyll-a 
content 

27 

Given the wide range of toxicity values in Table E2, we will work with (natural) log-transformed data. 

The transformed data now range from -0.635 to 8.784. The Burr III distribution cannot be fitted 

directly to these transformed data given the presence of negative values and the negative value of 

3l . To overcome both issues we further transform the data by subtracting the log-transformed 

values from 10. Thus, in terms of the original data (x), the transformed values (y) are obtained as

10 ln( )i iy x  . The first four sample L-moments for the y values are 5.296, 1.611, 0.175, and 

0.147. The sample LCV value is 0.304 and the value of 3 is 0.109. Following the graphical procedure 

as previously described (Figures E4 and E5) we obtain the initial L-moment estimates of c and k as 

5.8 and 0.26 respectively. Substituting these values into Equation E.15 gives b̂  7.925. The final L-

moment estimates are ˆ ˆˆ7.909, 5.768, 0.262b c k  
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Figure E4. Plots of (a) LCV and (b) τ3 for metolachlor data as a function of c and k in Equation 9. 

Figure E5. Figures 4(a) and 4(b) overlaid on single plot.
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A plot of the empirical and fitted cdfs is shown in Figure E6.

Figure E6. Comparison of fitted and empirical cdfs for metolachlor in freshwater example.

For untransformed data, HC values are readily obtained using Equation E.16: 

1
1 ˆ
ˆ1ˆ 1

c
k

HC b




 
      
 

 (E.16) 

However, in Example 2 we used the transformation ln( )Y a X  where the constant a was chosen 

to be 10. Let
X
pHC  denote the pHC for the untransformed data and

Y
pHC denote the pHC for the 

transformed data. Then it is straightforward to show that 

1exp( )X Y
p pHC a HC   (E.17) 

Using ˆ ˆˆ7.909, 5.768, 0.262b c k   and 0.95   in Equation E.16 we obtain 0.95 10.314YHC 

and upon substitution in Equation E.17 we obtain 0.05 exp(10 10.314) 0.731XHC    . Similarly, we 

obtain 0.01 exp(10 13.873) 0.021XHC    .  

ANZG (2020) reported an 0.05
XHC of 0.46 and an 0.01

XHC  of 0.0084.  
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Model-averaged estimates using a log-normal and a Weibull distribution (Figure E7) gave an 0.05
XHC

of 0.762 and an 0.01
XHC of 0.0838.  

Clearly, there’s considerable variability in these estimates although the ANZG estimates would 

appear to be overly conservative.  
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Figure E7. Model-averaged fit of lognormal and Weibull distributions for metolachlor in freshwater
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sion and Conclusions 

of L-moment estimation for fitting SSDs should be explored further. Results presented 

hile preliminary, are nevertheless encouraging and suggest: 

Distributions can be fitted with ease – we have shown how to obtain very good parameter 

estimates using an entirely graphical approach; 

L-moments always exist and provided the SSD has a finite first moment (which will always be 

the case for the distribution used for SSD modelling), moment estimators can be uniquely 

determined. 

Method appears robust to outliers and has good small-sample properties. 

Computations are very fast. 

example. 
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 The calculations are readily coded in R and make use of package lmom
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Appendix F: Estimation and inference for the burr iii distribution

David R. Fox 

In this Appendix we derive theoretical results for the Burr III distribution which will admit a closed-

form expression for the covariance matrix of parameter estimates and in turn, allow the 

computation of a standard error for an estimated xHC . 

PRELIMINARIES 

The pdf for the Burr III distribution is: 

𝑓𝑋(𝑥; 𝑏, 𝑐, 𝑘) =
𝑏𝑐𝑘(

𝑏

𝑥
)
𝑐−1

𝑥2[1+(
𝑏

𝑥
)
𝑐
]
𝑘+1  ; 𝑥, 𝑏, 𝑐,𝑘 > 0

By letting 

c
b

Y
X

 
  
 

 we obtain: 

   
1

; 1   ;  0
k

Yg y k k y y
 

   (F.1) 

An alternative parameterisation of the Burr III distribution is given by Equation F.2. 

  1
; , ,   ;  , , , 0

1

X

x

h x x
x

x








     





 
 
  

  
   
  

(F.2) 

whose (raw) moments are: 

 

1

  ;  

r

r

r r

X r

 
 

 


   
      
          

Now, since    ; ,1,1Yg y h y k  we have immediately that: 

   
 

1
  ;  1r r k r

Y r k
k

   
       

(F.3) 
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THE INFORMATION MATRIX FOR THE BURR III DISTRIBUTION 

It is well known that the MLE ̂  is asymptotically normally distributed with mean   and variance 

given as the inverse of the information matrix,
 2

2

l  
  

 
 where, for the Burr III distribution,

 , ,b c k  and  

   log ; , ,Xl f x b c k     . With
 2

i j

i j

l
k

 

  
  

   
we next develop theoretical expressions for 

the 6 unique i jk elements. Some of these can be quite complex and involve powers of the quantity

b

x
.  

For example, 

2

11 22

1

1

c c c c c

c

b b b b b
k c k ck

x x x x xc
k

b b

x

                          
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. 

It will be convenient to use the transformation 

c
b

Y
x

 
  
 

and so 11k for example becomes: 
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(F.4) 

It turns out that all 6 unique i jk elements involve linear combinations of the following quantities: 
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Evaluation of explicit expressions for 
1 7,I I…  tends to be repetitive and involves integrals of varying 

complexity. An illustrative example of a simpler case is given for
1I  . 
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Letting 2k k    we have  
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
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
 . We recognise this integral as the expected 

value of Y where Y has the pdf  ;Yg y k  with  Yg   given by Equation F.1.  

Now from Equation F.3:  
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We will not labour through all th

be needed to evaluate the inform
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NB: not all the results in Table F1 ar

related to the expectation of third d

Hessian matrix when using a Newto

1I
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e tedious calculations associated with various expectations that will 

ation matrix. Instead, we provide results in Table F1 for various 

ore general expression: 
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ln ln 1
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t

Y Y Y
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. 

e used to construct the information matrix. Entries for which q=1 are 

erivatives of the log-likelihood function and are useful for computing the 

n-Raphson method to solve the likelihood Equations.
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Y k

k kY
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Table F1. Expectations of various functions of Y. Notation:    is the digamma function; 
   m

  is the polygama function of order m;  is the Euler–Mascheroni constant; H(k) is the 

Harmonic number (
1

1k

n n

  for integer k>0;  1k    for 0k   ); and    is the Riemann zeta function.  
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The elements of the information matrix can be expressed in terms of  1 7, ,I I… as follows: 

 11 1 2 32
1

c
k ck c k I k I I

b
         

 22 1 2 3 42

1
2 1k I I I k I

c
        

33 2

1
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  

 13 5 1
c

k I
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23 7

1
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Expressions for  1 7, ,I I… can be found by making the appropriate substitution of q,r,s,and t in 

Table F1. Doing so, we finally obtain the elements of the information matrix as: 
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                                  
  

 
  

(F.5) 

ESTIMATION AND INFERENCE FOR THE HCx

The results of the previous Section can be used to obtain an estimate of the standard error of an 

estimated
xHC value and hence a  1 100%  confidence interval. 

ESTIMATING THE HCX

The pdf and cdf for the Burr III distribution are given by Equations F.6 and F.7 respectively. 
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
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   

(F.6) 

 
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x


  
  
   

(F.7) 

It is straightforward to obtain an expression for the pth quantile of the Burr III by a simple re-

arrangement of the terms in Equation F.7: 

  1
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, , ,    =   

1
1

p
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b
q p b c k HC

p



 
       

(F.8) 

STANDARD ERROR OF THE HCX

We use the delta method to obtain an estimate of the standard error of the HCx as follows. Let

   ;q p   for some p and  , ,b c k  and  q  is the function given by Equation F.8. Now, for 

a sample of size n, the information matrix is  
2

i j

n
 

  
      

   
 . The MLE, ̂  is asymptotically 

normally distributed with: 

 
1ˆCov




       

from which we have: 

  
1

ˆ
ˆ ˆCov




       

(F.9) 

The elements of  ˆ  are obtained using Equation F.5 with  ˆ ˆˆ ˆ, ,b c k   . 

Using the delta-method, the approximate variance of  ̂ is given by Equation F.10. 

     ˆ
ˆ ˆ ˆ

T T

Var


      
 
  (F.10) 

where     is the gradient vector having elements given by Equation F.11. 
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(F.11) 
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Thus, the estimated standard error of the HCp is: 

   ˆ ˆSE Var     
   
  (F.12) 

EXAMPLES
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1. Cadmium dataset 

Using Equation F.9 we have: 

 
4 3

1
3 3

4

5.272 10 1.814 10 5.706
ˆ 1.814 10 9.557 10 19.018

5.706 19.018 6.189 10

 


 

   
 

      
    
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Aside: The estimated parameter correlation matrix,  has the following elements: 

1.0 0.808

0.808 1.0 0.7

0

0.999

0.999

82

0.782 1.

 
 

  
  







The highlighted entry in red is the correlation between b̂  and k̂ . This shows that these two 

parameter estimates are almost perfectly (negatively) correlated. This is the cause of the 

instability issues with the MLE for the Burr III distribution. 

With p=0.05 in Equation F.11 we obtain: 

   ˆ 124.049, 1.516, 0.011
T

   

and substituting this into Equation F.10 we obtain: 

3ˆ 3.955 10

ˆ 0.063

Var

SE

   

   





Using Equation F.8 we have5 0.147HC   and thus an approximate 95% confidence interval is: 

   5 5
3, 1

2

0.019;0.275
n

HC t SE HC 
  

 

   
 

Relevant output from Burrlioz is shown below. 

From Burrlioz we obtain: 5 0.15HC  and a boostrapped 95% confidence interval  0.066;0.47 . 
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2. Chloride dataset 

A comparison of confidence intervals obtained from Burrlioz and the methods of this report are 

shown in Table F1. It is evident from this comparison that there are large differences in the lower 

limits and the upper limits at the 99% and 95% protection levels. This raises an important, and as of 

this time, unresolved issue of computation of confidence intervals using analytical expressions of the 

form presented in this report. 

Table F1. Comparison of 95% confidence intervals for various HCx values for chloride data 

Protection 

Level 
GV 

SE

(Eqn.F.12) 

Lower 95% CI

(Burrlioz) 

Lower 95% CI

(this report) 

Upper 95% CI

(Burrlioz) 

Upper 95% CI

(this report) 

99% 16 16.884 1.5 0 217 55.9 

95% 78 45.073 20 0 314 183.5 

90% 154 62.976 59 7.1 393 301.3 

80% 309 87.412 162 105.2 557 513.5 
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Aside: How should HCx confidence intervals be computed? 

This question only arises in the context of obtaining confidence intervals by direct computation 

rather than bootstrapping. The central issue is managing negative lower CI limits. This cannot 

occur from bootstrapping since, in this case, the CI approximation is via an analysis of simulated HCx

values and as we only use distributions defined on the positive real line for SSDs, all the simulated 

HCx values will be non-negative. However, in the analytical approach, we obtain a confidence 

interval by adding and subtracting a multiple of the estimated standard error to the estimated HCx

value. Clearly, the lower limit will be negative if this multiple is larger than the estimated HCx. One, 

not unreasonable approach, is to simply relace the negative lower limit with zero as has been done 

in Table F1 for the 99% and 95% HC values. Difficulties with this approach can and will arise if, as is 

sometimes the case, the lower CI is to be used as a guideline value when an additional level of 

protection is required. In such cases, a zero concentration is both operationally and conceptually 

problematic. From a practical point of view the whole point of the SSD-fitting exercise is to identify a 

concentration that is deemed to be sufficiently protective to the ecosystem while still allowing the 

polluting process to proceed – albeit with increased safeguards. Conceptually, at zero concentration, 

the level of protection is 100% and so zero cannot be, say, an HC5 unless we redefine the level of 

protection to be a minimum. 

One way to resolve this conundrum is to compute the CI for log-transformed data and then back-

transform the CI limits by exponentiating to obtain a CI commensurate with the original scale. While 

this guarantees that the back-transformed limits will always be non-negative, the process of 

exponentiation can result in inflated limits. 

Further discussion and contemplation by ecotoxicological researchers is required to come to an 

agreed position on the preferred approach. 

3. Metolachlor dataset 
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A comparison of confidence intervals obtained from Burrlioz and the methods of this report are 

shown in Table F2. Once again, there are large differences between methods – particularly for the 

upper limits with Burrlioz interval widths up to 50 times wider than those obtained by the 

analytical methods of this report. 

Table F2. Comparison of 95% confidence intervals for various HC values for chloride data. 

Protection 

Level 
GV 

SE

(Eqn.F.12) 

Lower 95% CI

(Burrlioz) 

Lower 95% CI

(this report) 

Upper 95% CI

(Burrlioz) 

Upper 95% CI

(this report) 

99% 0.0085 0.021 0 0 3.3 0.066 

95% 0.46 0.665 0 0 11 2.289 

90% 2.6 2.664 0.49 0 22 9.908 

80% 15 10.093 2.5 0 61 42.414 

4. Nickel in freshwater dataset 
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A comparison of confidence intervals obtained from Burrlioz and the methods of this report are 

shown in Table F3. Unlike the previous examples, we see a much closer level of agreement between 
the two sets of confidence intervals. 

Table F3. Comparison of 95% confidence intervals for various HC values for freshwater nickel data. 

Protection 

Level 
GV 

SE

(Eqn.F.12) 

Lower 95% CI

(Burrlioz) 

Lower 95% CI

(this report) 

Upper 95% CI

(Burrlioz) 

Upper 95% CI

(this report) 

99% 0.73 0.638 0.23 0 2.3 1.701 

95% 2.5 1.19 1.3 0.706 4.8 4.334 

90% 4.4 1.503 2.8 2.117 7.1 6.702 

80% 8.1 2.071 5.5 4.9 12 11.21 
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Finally, we provide code below to implement the methods of this Appendix: 
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Appendix G: A note on re-scaling SSDs

David R. Fox 

Let X have pdf  ; ,Xf x    where   is the shape parameter and   is the scale parameter and 

; ; 0x    . 

Further, letY X    where  is some positive constant. Then  
0

p

X pf x dx p



   is the pth

percentile for X. 

But p p pP X p P Y p P Y p                         and so p   is the pth

percentile for Y. 

Distributions with a scale parameter 

Now let 
X

Y


 . Then,        Y X

X
G y P Y y P y P X y F y 



 
       

 
 . 

LOG-LOGISTIC DISTRIBUTION

 
1

1

XF x
x








 
 
 

 where the scale parameter is  . 

Therefore  
1 1

1 1

YG y
y y

k

 




 
 

   
    
   

  where k



  .  

We see that the distribution for Y is of the same form as the distribution for X, but with scale 

parameter 



. 

Thus, if  ˆˆ ,   are parameter estimates from X-data, then the re-scaled Y data will have parameter 

estimates ˆ ˆ,





 
 
 

. 

LOGNORMAL DISTRIBUTION

If  ~ ,X LN  then    2ln ~ ,X N   . Now if 
X

Y


 , then    2ln ~ ln ,Y N    and hence Y 

has a log-normal distribution with parameters  ln ,   . 
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INVERSE PARETO DISTRIBUTION

  1 1
   0Xf x x x  


    and    XF x x


  . 

Therefore,    Y

x
G y x k x





 

    
      
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 where k



  and so the distribution of Y is of the 

same form as X. 

INVERSE WEIBULL DISTRIBUTION

 
1 1

exp expX

x
F x

x



 

     
        

     

.  

Now 
1 1

X Y
  and therefore  

1 1 1 1
exp expYG y

y y

 

  

      
          

        
 . 

Thus the distribution for Y is also inverse Weibull with scale parameter    and shape parameter 

  . 
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Appendix H: Reconciliation of HCx estimates for the inverse pareto 

distribution

David R. Fox 

PRELIMINARIES 

The Burrlioz software and actuar package in R use different parameterisations of the inverse 

Pareto distribution (a.k.a ‘European’ and ‘American’ implementations). 

This difference has important ramifications for estimation, random data generation, and HCx

estimation. Without going into the mathematical detail, the differences can be reconciled as 

described below. 

RELATIONSHIP BETWEEN HCX VALUES 

First, assume the sample data  1, , nY Y…  were generated using the rinvpareto from the actuar

package with shape a  and scale b . 

If this Y-data is used in Burrlioz without modification, the shape and scale parameter estimates 

obtained are not estimates of  ,a b  and consequently, the HCx estimates from Burrlioz will not

be representative of the true HCx values. To avoid this situation, we need to do the following: 

Step 1 

Transform the Y-data to obtain Z-values as follows: 

1 Y
Z

b Y b

 
  

 

Step 2 

Supply the Z-data to Burrlioz and fit the inverse Pareto distribution. 

Step 3 

Denote the pth percentile of the Y-data as p  and the pth percentile of the Z-data as p . 

Then, the actuar percentile 
 p  is obtained from the Burrlioz percentile 

 p
 as: 

2

1
p

p

b

b






 
   

An example follows. 
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Appendix I: Additional analyses assessing the recommended distribution set  

Rebecca Fisher 

Comparing the recommended candidate distribution set to using all distributions 

The final recommended set of candidate distributions comprises the log-normal, log-logistic, inverse 
Weibull, Weibull, Gamma and the log-normal-log-normal mixture distribution. Here we examine the 
impact of restricting the candidate set to only these recommended distributions compared to using 
all of the available distributions (Burr III, Gamma, Gompertz, inverse Pareto, log-Gumbel (inverse 
Weibull), log-logistic, log-logistic-log-logistic mixture, log-normal, log-normal-log-normal mixture, and 
Weibull), as was done in many of our initial analyses and comparisons. 

The largest set of simulation results are those from Simulation Study 1 (see Section 2.5.2, Simulated 
datasets). We re-analysed these results using the recommended set of distributions, and compared 
the bias and coverage relative to the original analyses based on all of the available distributions. We 
found that there was a slight increase in bias when the distribution set was restricted to the 
recommended set compared to when all of the available distributions were used, particularly for data 
generated using a log-logistic distribution at low species protection values (0.01, Fig. I-1). While the 
recommneded set  results in slightly lower coverage  compared to when all distributions are used, the 
differences are marginal (Figure I-2) and coverage overall is very high compared to either the original 
“default”(log-logistic, log-normal and gamma), or that obtained via RBurrlioz (see Figure 16).  
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Figure I-1. Bias as measured as the log ratio of the estimated HC value against the actual known value, 
across four different species protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent 
to HC1, HC5, HC10 and HC20) for data simulated from three different parent distributions (plot rows 
- inverse Weibull, log-logistic and log-normal). Plots are coloured according to the candidate 
distribution set used for model averaging and includes one using only the distributions recommended 
in this report (log-logistic, log-normal, gamma, inverse Weibull, Weibull, and log-normal-log-normal 
mixture, recommended) and one using all the available distributions (all). 
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Figure I-2. Approximate coverage estimates for a nominal 95% confidence interval across four 
different species protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, 
HC5, HC10 and HC20) for data simulated from three different parent distributions (plot rows - inverse 
Weibull, log-logistic and log-normal). Plots are coloured according to the candidate distribution set 
used for model averaging and includes one using only the distributions recommended in this report 
(log-logistic, log-normal, gamma, inverse Weibull, Weibull, and log-normal-log-normal mixture, 
recommended) and one using all the available distributions (all). 
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Implications of the recommended set for data following a Burr III distribution 

The Burr III distribution is the primary distribution adopted in the Burrlioz 2.0 method and 

software. For reasons described in our discussion, our final recommended set does not include this 

three-parameter distribution in the candidate set for model averaging. While the examination above 

(Comparing the recommended candidate distribution set to using all distributions) using the 

Simulation Study 1 data suggests the recommended set should have comparable coverage and 

accuracy compared to using all the available distributions in ssdtools, those simulated data were 

based on the log-logistic, inverse Weibull and log-normal distributions, all of which are retained in the 

recommended candidate distribution set. Simulation studies are essential for assessing coverage and 

accuracy of SSD modelling methods because knowledge of the ‘true’ parameter values (and 

corresponding HCx values) is required. However, the choice of distribution used to generate the data 

in the simulations can have a direct impact on the results. To examine a worst-case scenario where 

the underlying generating distribution is not one of those contained in the recommended candidate 

set, we simulated data using the three parameter Burr III distribution to assess coverage and bias, as 

an additional test of the robustness of the recommended final candidate distribution set. The 

simulated data are shown in Figure I-3, and are based on shape1 values of 0.1, 0.5, 1, 5 and 10, with 

shape2 and scale both being set at 1 (Figure I-3). We found that there was little difference in bias and 

coverage between the “all” and our recommended set across the range of shape1 values explored 

(Figure I-4, Figure I-5). In most cases bias was slightly negative (Figure I-4). However, this bias was 

relatively similar amongst the two distribution sets, resulting in only marginal loss in coverage for the 

recommended distribution set when compared to a set using “all” available distributions (Figure I-5).  

Figure I-3. Burr III distributions used in the simulation study to assess coverage and bias estimates using the 
recommended set of distributions. Data are based on shape1 values of 0.1, 0.5, 1, 5 and 10, with shape2 and 
scale both being set at 1. 
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Figure I-4. Bias as measured as the log ratio of the estimated HC value against the actual known value, 
across four different species protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent 
to HC1, HC5, HC10 and HC20) for data simulated from three different Burr III parent distributions (plot 
rows - shape1=0.1, 0.5, 1, 5, and 10, see Figure I-3). Plots are coloured according to the candidate 
distribution set used for model averaging and includes one using only the distributions recommended 
in this report (log-logistic, log-normal, gamma, inverse Weibull, Weibull, and log-normal-log-normal 
mixture, recommended) and one using all the available distributions (all). 
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Figure I-5. Approximate coverage estimates for a nominal 95% confidence interval across four different 

species protection levels (plot columns are p = 0.01, 0.05, 0.1 and 0.2; equivalent to HC1, HC5, HC10 

and HC20) for data simulated from three different Burr III parent distributions (plot rows - shape1=0.1, 

0.5, 1, 5, and 10, see Figure I-3). Plots are coloured according to the candidate distribution set used 

for model averaging and includes one using only the distributions recommended in this report (log-

logistic, log-normal, gamma, inverse Weibull, Weibull, and log-normal-log-normal mixture, 

recommended) and one using all the available distributions (all).
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Mixture distribution mixing proportion and boundary conditions 

The default arguments in ssdtools with respect to the statistical mixture distributions were to 

restrict the mixing parameter (labelled pmix in ssdtools) such that it had to be >0.2, and to exclude 

the mixture distribution(s) when this parameter is at the boundary (at_boundary_ok = FALSE). These 

were the conditions used at the time our Simulation Studies 1-3 were carried out.  

Because our recommendation is to change these settings (see Finalise default distributions), we 

examined the resulting impact on model weights for the ssddata datasets. Specifically, we compare 

the original settings of pmix > 0.2 and at_boundary_ok = FALSE (the default at the time the simulations 

in the body of the report were run) to 0 and at_boundary_ok = TRUE (our recommendations in the 

current report).  

When pmix is restricted to >0.2, nine of the datasets did not include the log-normal mixture in the 

fitted set, presumably due to exclusion of the distribution because pmix is at the boundary (Table I-1). 

When pmix was allowed to converge to 0 (ie the log-normal-log-normal mixture converges to simply 

a log-normal) and be retained even at the boundary, the log-normal mixture is included for all 24 

example datasets, as would be expected (Table I-1). For two datasets (aims molybdenum marine – 

unfiltered and anonymous dataset e, Figures I-7g andi) the log-normal-log-normal mixture has high 

weight regardless of the settings used, and both of these datasets show a high level of bi-modality. Of 

the nine datasets failing to fit the log-normal-log-normal mixture with the original default settings, 

seven had very low weight (Table I-1), as might be expected given the mixture likely converges to a 

single log-normal.  

Two datasets for which the log-normal-log-normal mixture failed to fit when pmix was restricted to 

>0.2 gained moderately high weight when this restriction was remove (Table I-1). These were the ccme 

cadmium dataset (AICc weight = 0.42, Figure I-7o) and the csiro nickel dataset for freshwater (AICc 

weight =0.32, Figure I-7x). For the cadmium dataset the mixture distribution appears to be modelling 

some extreme values in the right-hand tail of the dataset (Figure I-7o). For the freshwater nickel 

dataset, the mixture appears to be modelling two extreme values in the left-hand tail (Figure I-7x). 

Overall, despite some small differences in weighting of models based on the two different settings, 

the estimates of HCx were similar, including estimates of the lower and upper confidence limits (Figure 

I-6). As such, the recommended changes would be unlikely to alter any of the conclusions drawn from 

our initial simulation studies based on the default settings. 



154 

Table I-1. Relative model weights for the 24 example datasets in ssddata, using two alternative arguments 

for boundary mixing parameter (pmix) and exclusion criteria. The default settings in ssdtools at the time 

simulations were run in the report were pmix = 0.2, at_boundary_ok = FALSE (see column (a). The 

recommended settings in this report are pmix = 0, at_boundary_ok = TRUE (see column (b). Note some data 

sets are included more than once with additional filtering. 

Data

pmix=0.2, boundary not ok pmix=0, boundary ok
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aims aluminium marine (temperate) 0.21 0.12 0.17 0.25 0.00 0.26 0.21 0.12 0.17 0.25 0.00 0.26

aims aluminium marine (tropical) 0.38 0.02 0.12 0.09 0.00 0.40 0.38 0.02 0.12 0.09 0.00 0.40

aims aluminium marine 0.02 0.19 0.32 0.39 NA 0.09 0.02 0.19 0.32 0.39 0.00 0.09

aims gallium marine 0.27 0.09 0.13 0.17 0.00 0.35 0.27 0.09 0.13 0.17 0.00 0.35

aims molybdenum marine (temperate) 0.41 0.04 0.10 0.12 0.00 0.33 0.41 0.04 0.10 0.12 0.00 0.33

aims molybdenum marine (tropical) 0.10 0.46 0.15 0.20 0.00 0.10 0.10 0.46 0.15 0.20 0.00 0.10

aims molybdenum marine 0.05 0.08 0.04 0.08 0.70 0.06 0.05 0.08 0.04 0.08 0.70 0.06

anon a 0.35 0.02 0.10 0.17 0.00 0.35 0.35 0.02 0.10 0.17 0.00 0.35

anon b 0.16 0.15 0.22 0.28 NA 0.20 0.16 0.15 0.21 0.28 0.00 0.20

anon c 0.00 0.60 0.17 0.21 NA 0.02 0.00 0.59 0.17 0.21 0.01 0.02

anon d 0.35 0.06 0.10 0.17 0.00 0.32 0.35 0.06 0.10 0.17 0.00 0.32

anon e 0.20 0.00 0.01 0.01 0.73 0.05 0.20 0.00 0.01 0.01 0.73 0.05

anzg metolachlor fresh 0.19 0.03 0.15 0.25 NA 0.38 0.18 0.02 0.14 0.22 0.10 0.35

ccme boron 0.36 0.01 0.07 0.18 0.03 0.36 0.36 0.01 0.07 0.18 0.03 0.36

ccme cadmium 0.00 0.94 0.06 0.00 NA 0.00 0.00 0.55 0.03 0.00 0.42 0.00

ccme chloride 0.28 0.00 0.25 0.15 NA 0.32 0.26 0.00 0.24 0.14 0.05 0.30

ccme endosulfan 0.22 0.19 0.12 0.24 0.03 0.21 0.22 0.19 0.12 0.24 0.03 0.21

ccme glyphosate 0.02 0.58 0.12 0.23 0.03 0.04 0.02 0.58 0.12 0.23 0.03 0.04

ccme silver 0.08 0.33 0.21 0.27 0.00 0.11 0.08 0.33 0.21 0.27 0.00 0.11

ccme uranium 0.12 0.12 0.22 0.31 NA 0.22 0.12 0.12 0.22 0.31 0.00 0.22

csiro chlorine marine 0.00 0.03 0.63 0.31 0.03 0.01 0.00 0.03 0.63 0.31 0.03 0.01

csiro nickel fresh (temperate) 0.06 0.18 0.29 0.35 NA 0.12 0.06 0.18 0.29 0.35 0.01 0.12

csiro nickel fresh (tropical) 0.21 0.10 0.19 0.31 0.00 0.19 0.21 0.10 0.19 0.31 0.00 0.19

csiro nickel fresh 0.06 0.03 0.35 0.46 NA 0.10 0.04 0.02 0.25 0.33 0.30 0.07
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Figure I-6. HC values estimated using ssdtools with the recommended distribution set of log-logistic, log-

normal, Gamma, inverse Weibull, Weibull, and log-normal-log-normal mixture. Plotted are fits based on two 

different default arguments, including pmix = 0.2, at_boundary_ok = FALSE (x-axis) and pmix = 0, 

at_boundary_ok = TRUE (y-axis). Plot rows show comparisons for 80th, 90th, 95th and 99th protection values 

(equivalent to HC20, HC10, HC5 and HC1) and plot columns are the actual estimate, as well as the lower and 

upper confidence bounds. 

Allowing the mixing parameter (pmix) to go to 0 did result in a slightly lower proportion of successful 

bootstrap iterations in some cases, meaning that to obtain confidence bands on the HCx the argument 

min_pboot had to be lowered from the default 0.99 (Table I-2). The dataset with the lowest proportion 

was the ccme chloride dataset (at 0.938), although the anzg metolachlor freshwater, ccme cadmium, 

csiro chlorine marine and csiro nickel freshwater datasets all had proportions lower than the current 

default in ssdtools (min_pboot > 0.99, Table I2). Initial investigations suggest that this is being 

caused by the TMB being unable to fit the log-normal-log-normal distribution to a certain proportion 

of the parametric bootstrap samples that are generated based on the estimated parameters from the 

original distribution. Further investigation is required to resolve this issue in the current development 
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version of ssdtools, although relaxing the current default min_pboot requirement may also be 

acceptable, given the current setting is very stringent. 

Table I-2. Proportion of successful bootstrap iterations for the 24 example datasets in ssddata, using two 

alternative arguments for boundary mixing parameter (pmix) and exclusion criteria. The default settings in 

ssdtools at the time simulations were run in the report were pmix = 0.2, at_boundary_ok = FALSE (see 

column (a). The recommended settings in this report are pmix = 0, at_boundary_ok = TRUE (see column (b). 

Note some data sets are included more than once with additional filtering.

Data a) pmix=0.2, boundary not ok b) pmix=0, boundary ok

aims aluminium marine (temperate) 1 0.999

aims aluminium marine (tropical) 0.999 0.999

aims aluminium marine 1 1

aims gallium marine 0.999 0.999

aims molybdenum marine (temperate) 0.998 0.999

aims molybdenum marine (tropical) 0.996 0.999

aims molybdenum marine 0.991 0.992

anon a 1 1

anon b 0.999 0.999

anon c 1 1

anon d 1 1

anon e 0.996 0.998

anzg metolachlor fresh 1 0.964

ccme boron 0.995 0.994

ccme cadmium 1 0.94

ccme chloride 1 0.938

ccme endosulfan 0.994 0.991

ccme glyphosate 0.998 0.994

ccme silver 0.999 0.999

ccme uranium 1 1

csiro chlorine marine 0.999 0.941

csiro nickel fresh (temperate) 1 1

csiro nickel fresh (tropical) 1 1

csiro nickel fresh 1 0.964
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All ssddata fits using the recommended settings 

Figure I-7i. All ssddata datasets fitted using the recommended distribution set in ssdtools. Note 

some datasets are also fitted to subsets based on filtering to a specific domain.
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Figure I-7ii. All ssddata datasets fitted using the recommended distribution set in ssdtools. Note 

some datasets are also fitted to subsets based on filtering to a specific domain.
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Figure I-7ii. All ssddata datasets fitted using the recommended distribution set in ssdtools. Note 

some datasets are also fitted to subsets based on filtering to a specific domain.


