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SUMMARY

Power and sample size calculations are an important but underutilised component of many ecological investi-
gations. A key problemwith these calculations is the need to estimate or guess the effect size and error variance (the
design parameters) prior to the actual data collection. Furthermore, calculations associated with statistical power
and sample size are invariably predicated on normal distribution theory.While the central limit theorem ensures the
applicability of normal-based inference for reasonably large sample sizes, the impact of violations of this assumed
distributional form in the context of power and sample size determinations is rarely considered. This paper uses
information-gap theory to provide sample size guidelines that are robust to uncertainties associated with both the
design parameters and distributional form. A simple information-gap approach is developed for one- and two-sided
hypothesis tests. The model results quantify the extent to which minimum power demands can be protected from
uncertainty by taking additional samples, and demonstrate the importance of the combined effects of standard
deviation/effect size ratio and assumed distribution in these considerations. Info-gap theory does not eliminate the
need for an initial estimate or best guess of the design parameters or the specification of a parametric distribution
fromwhich to compute power. It does, however, measure the degree of insurance provided by additional samples in
the face of uncertainties in each of these. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hypothesis testing has proved to be a popular and valuable way of assessing statements about

environmental condition. A focus on ‘compliance’ is generally accompanied by a commensurate

increase in attention to the related issues of power and sample-size (Lyles et al., 1997). These

techniques are well known to researchers in many diverse disciplines including, but not limited to,

biology, ecology, psychology, medicine, epidemiology, pharmacology and botany (Green, 1989,

Fairweather, 1991, Cohen, 1992, Underwood and Chapman, 2003). The utility of power analysis
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(PA) is that it enables the researcher to assess the efficacy of a proposed monitoring and

analysis strategy. Specifically, it quantifies the probability that a statistical test procedure will

detect an effect of some prescribed magnitude when it in fact exists. The uptake and use of PA

has been patchy. As noted by Hoenig (http://www.esi-topics.com/nhp/comments/september-02-

JohnHoenig.html) PA has been widely advocated in journals and texts as a way of interpreting the

results of statistical tests. However, operational and conceptual difficulties coupled with flawed

advice on the use of post-hoc or retrospective PA (Reed and Blaunstein, 1995; Thomas and Juanes,

1996) as a way of resolving the ‘dilemma of the non-rejected null’1 (Hoenig and Heisey, 2001)

continues to undermine the utility of statistical power calculations (Tversky and Kahenman, 1971;

Oakes, 1986).

A particular operational difficulty is the circularity that inevitably arises when assigning important

parameter values such as effect size and population error variance prior to the data collection effort.

Most texts suggest that this is resolved by providing a best guess, utilising results from previous studies,

or in some other way, estimating the unknown parameter. In environmental studies, it is particularly

difficult to quantify an ecologically/biologically/environmentally meaningful or important ‘effect size’

due to the paucity of relevant data. Given the uncertainties in these critical inputs it is perhaps not

surprising that the researcher is sometimes cautioned against attaching too much credence to the

outputs (Fox, 2001). We agree with Lenth (http://www.stat.uiowa.edu/�rlenth/Power/) that the

specification of standardized, or ‘T-shirt effect sizes’ of ‘small’, ‘medium’ and ‘large’ is not the way to

resolve this problem.

Another potential difficulty arises when conventional tools are used for undertaking a PA. Many

standard formulae and software utilities for computing power and/or sample sizes are predicated on

normal distribution theory. While the central limit theorem (CLT) often provides a ‘safety-net’ by its

asymptotic guarantee of normality in the distribution of certain test statistics, reliance on it may be

unfounded in many environmental studies (see, for exampleWatson and Downing, 1976). Violations of

normality usually are most serious in preliminary assessments where effect sizes are ‘large’ (hence

relatively small sample sizes are involved) and the variable of interest has large third and fourth

moments (skewness and kurtosis). The impact of violations of the normality assumption on a PA is

rarely considered.

In this paper we restrict our attention to mean-based inference. In particular, we have a sample of

size n assumed to have been randomly selected from X�iidNðm; s2Þ for some random variable, X. Our

interest centres on using the sample mean X to test hypotheses concerning the (unknown) population

mean, m. Either asymptotically or exactly, X � Nðm; s2=nÞ.
Our primary interest is in developing a simple information-gap analysis (Ben-Haim, 2006) for

power calculations. The aim is to provide sample size guidelines that are robust to the uncertainty

associated with the specification of design parameters (population error variance and ecologically

significant effect size) as well as uncertainties in the distributional form of the test statistic. These

guidelines can serve as an initial starting point for environmental scientists concerned about the

statistical and ecological value of a proposed monitoring design.

In Section 2 we formulate the one- and two-tailed tests of interest. In Section 3 we develop the info-

gap analysis for parameter uncertainty and in Section 4 we consider uncertainty in the sampling

distribution.

1This refers to the situation where the failure of a statistical test to identify a ‘significant’ result is attributed to the test’s low
power.
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2. PRELIMINARIES

2.1. Single-mean, one-tailed test

We commence with a simple, one-tailed hypothesis testing situation for a single population mean, m

defined by the pair of hypotheses in Equation (1).

H0 : m ¼ m0

H1 : m > m0
(1)

A size-a test rejectsH0 in favour ofH1 for values of the test statistic X >C� (a) where X is the mean of a

sample of n observations and the ‘critical-value’ C�(a) is chosen such that P½X >C� (a)jm ¼ m0� ¼ a:
It is readily verified that C�(a) is given by Equation (2).

C�ðaÞ ¼ m0 þ za
sffiffiffi
n

p (2)

where za is the (1�a) 100 percentile of the standard normal distribution. Furthermore, it is evident

from Figure 1a that the proportion of times a true null hypothesis would be rejected by this decision rule

(Type I error) is precisely a—the so-called level of significance.

A second type of error is committed whenever the test procedure fails to reject a false null

hypothesis (Type II error). Type II errors are particularly important in environmental sciences since this

corresponds to a failure to identify an important environmental impact. The probability of a Type II

error (denoted by b) is P½X < C�ðaÞjm ¼ m1� ¼ b (Figure 1) where m1>m0. Note that in general,

aþ b 6¼ 1. Tomake explicit the dependency of b on the exact value ofm1 wewill use the notation b(m1).
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*C

α

β

11 0:H µ µµ >=

0accept H 0reject H

*C

2α

00 :H µ µ=

*
1C

β

2α

*
2C

0reject H 0reject H

0accept H

11 0:H µ µµ ≠=

1µ 1µ

   (b) (a)

Figure 1. Critical regions and important probabilities for a one-tailed (a) and two-tailed (b) hypothesis test of a single

population mean m
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An important quantity used to characterise the efficacy of the test procedure is its statistical power

1� b(m1) which is the probability that an incorrect null hypothesis is correctly rejected. Power curves

for the test defined by Equation (2) are obtained by evaluating the power at specific values of m¼m1

using Equation (3).

Power jm¼m1
¼ 1�F

m0 � m1

s=
ffiffiffi
n

p þ za

� �
(3)

where F is the cumulative distribution function (cdf) of the standard normal distribution. For fixed

sample size, n, the power is a monotonically increasing function of jDj where D¼m0�m1 is the effect

size or minimum detectable difference.

2.2. Single-mean, two-tailed test

The mathematical development for the more general case of a two-sided test is essentially identical. An

a-level test of the pair of hypotheses given in Equation (4) is defined by two critical regions X � C�
1ðaÞ

and X � C�
2ðaÞ (Figure 1b).

H0 : m ¼ m0

H1 : m 6¼ m0
(4)

where

C�
1ðaÞ ¼ m0 þ za=2

sffiffiffi
n

p ; C�
2ðaÞ ¼ m0 � za=2

sffiffiffi
n

p (5)

For a specified value m¼m1, the power of the test defined by Equation (5) is

Power jm¼m1
¼ 1�F

m0 � m1

s=
ffiffiffi
n

p þ za=2

� �
þF

m0 � m1

s=
ffiffiffi
n

p � za=2

� �
(6)

Despite advice to the contrary the computation of power for given design parameters {n, a}, should not

be used retrospectively to explain why a particular test result was non-significant (Hoenig and Heisey,

2001). The utility of these power considerations is at the planning stage of an investigation. As noted

above, however, this utility is compromised by the need to specify a priori a biologically meaningful

effect size (D¼m0�m1) and population standard deviation (s). This is invariably difficult to do and

many researchers simply opt to compute power for a range of possible effect sizes and/or standard

deviation.

3. INFO-GAP FORMULATION FOR PARAMETER UNCERTAINTY

Information-gap (hereafter referred to as info-gap) theory is a recent development designed to assist

decision makers faced with severe uncertainty (Carmel and Ben-Haim, 2005; Regan et al., 2005;

Ben-Haim, 2006). Info-gap theory aims to address the ‘robustness’ of decision making under

uncertainty. It asks the question: how wrong can a model and its parameters be without jeopardising the

quality of decisions made on the basis of this model? Put another way it maps the point at which

decisions should change in order to be robust to uncertainty in the parameters and functional forms of

statistical, economic or bio-physical models.
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Info-gap theory derives its robustness functions from three elements: a performance measure, a

process model and a non-probabilistic model of uncertainty. The performance measure is a statistical,

economic or bio-physical metric of value to the decision maker. The decision maker may wish to

increase the performance measure (e.g. dollar value of a share portfolio) or reduce it (e.g. probability of

extinction of an endangered species). In each case there is often a critical performance value which

defines a change in decision. In our case, the performance measure is the power of the statistical test.

The process model is a mathematical summary of the system in question. It describes the

relationship between the performance measure and the important characteristics of the system in

question. In this example the performance threshold is the power of the statistical test, and the process

models are the power equations for a one- and two-sided test, that is Equations (3) and (6). The critical

performance measure in power calculations is often taken to be 0.8. This is an arbitrary but well

accepted minimum for sample size calculations in biological sciences (Quinn and Keough, 2002).

The info-gap model of uncertainty for the uncertain quantities p in the process model is the

unbounded family of nested sets UðR; ~pÞ of possible realisations p, where R represents the unknown

‘horizon of uncertainty’ and p̃ our best or initial estimate of p. This model satisfies two axioms:

contraction : Uð0; ~pÞ ¼ f~pg (7)

nesting : R < R0 ) UðR; ~pÞ � UðR0; ~pÞ (8)

The contraction axiom states that in the absence of uncertainty (R¼ 0), our best estimate ~p is correct,

while the nesting axiom states that the range of uncertain variation increases as the horizon of

uncertainty increases. In all cases R is unknown and unbounded, R� 0. In this example the uncertain

quantities are the effect size D¼m0�m1 and the population standard deviation s, such that p¼ (D, s).
Our initial or best estimate of the effect size and standard deviation is denoted ~p ¼ ð~D; ~sÞ.

Info-gap theory entertains numerous classes of non-probabilistic uncertainty models (Ben-Haim,

2006). An info-gap model is an unbounded family of nested sets of possible occurrences, such as

uncertain parameters or functions. The structure of an info-gap model is chosen according to the

available prior information and the nature of the uncertain entities. We will consider several specific

info-gap models in this paper.

In this section we consider uncertain parameter values—effect size D and standard deviation s. Let

our best estimates of these parameters be ~D and ~s, respectively. In the one-sided test of Equation (1),

D< 0 and only negative effect sizes are considered, but the fractional error of the estimate,

ðjðD� ~DÞ=~DjÞ, is unknown. Likewise, the standard deviation must be positive but the fractional error of

the estimate, ðjðs � ~sÞ=~sjÞ, is unknown. With this prior information we formulate the following

fractional-error info-gap model:

U1ðR; ~D; ~sÞ ¼ ðD; sÞ : ð1þ RÞ~D � D � min½0; ð1� RÞ~D�
max½0; ð1� RÞ~s� � s � ð1þ RÞ~s

� �
; R � 0 (9)

This is an unbounded family of nested sets of (D, s) values. The sets become more inclusive as the

horizon of uncertainty, R increases. A worst case is not known so R is unbounded.

We will also consider two-sided tests in which the effect size can be either positive or negative. In

this case the fractional-error info-gap model becomes:

U2ðR; ~D; ~sÞ ¼ ðD; sÞ : D�~D
~D

��� ��� � R

max½0; ð1� RÞ~s� � s � ð1þ RÞ~s

( )
; R � 0 (10)
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The definition of the performance measure, process model and uncertainty model(s) completes the

specification of the formulation of the info-gap analysis.

We now turn to the derivation of the robustness function. In info-gap parlance ‘robustness’ is defined

as the greatest horizon of uncertainty, across all uncertain model components, that still meets the pre-

defined performance requirement. In our application the robustness of a size a test based on a sample of

size n, is the greatest horizon of uncertainty R̂ for which all combinations of the uncertain parameters

p¼ (D, s) achieve the minimum required power, that is

R̂ðn;bcÞ ¼ max R : min
ðD;sÞ2UðR;~D;~sÞ

powerðD; s; nÞ � 1� bc

 !( )
(11)

where bc is the critical value of b such that the power of the test is greater than or equal to the minimum

required power, for example 1� bc¼ 0.8. Equation (11) is the robustness function for this application

of the info-gap model. The strategy of robust-satisficing (Ben-Haim, 2006) is to attempt to guarantee an

adequate level of power, by choosing a value of n which is highly robust to uncertainty. Thus, for any

given sample size, n, the robustness function indicates the confidence in attaining desired power with

that n.

Examination of the process models (Equations (3) or (6)) and the uncertainty models (Equations (9)

or (10)) reveals that power decreases as the standard deviation increases, and attains a minimum at

uncertainty R when s ¼ ð1þ RÞ~s. For the one-sided case power decreases as the effect size decreases
in absolute value, that is D ¼ min½0; ð1� RÞ~D�. The same effect occurs for the two-sided case, that is

power is minimised for D ¼ ð1� RÞ~D but only over the interval 0�R� 1.

Combining the performance measure, process model and uncertainty models allows us to re-write

the inner minimum of the robustness function (Equation (11)) as

1� bc � 1�F½hðR; ~D; ~s; nÞ þ za� (12)

for the one-sided case, and

1� bc � 1�F½hðR; ~D; ~s; nÞ þ za=2� þF½hðR; ~D; ~s; nÞ � za=2� (13)

for the two-sided case, where (in both cases)

hðR; ~D; ~s; nÞ ¼ ð1� RÞ~D ffiffiffi
n

p
ð1þ RÞ~s ; (14)

and R� 1. For R> 1 the info-gap model in Equations (9) and (10) imply that hðR; ~D; ~s; nÞ ¼ 0.

Equations (12) and (13) can be easily solved numerically which is the approach adopted here.

Specifically, a plot of R on the horizontal axis versus the right-hand side of Equations (12) or (13) on the

vertical axis is precisely a plot of the robustness R̂ðn;bcÞ versus the power. We now proceed to an

example.

3.1. Illustrative example

Figures 2 and 3 plot the robustness function of the one- and two-sided tests for various values of the

standardized effect size D/s and for various sample sizes with a¼ 0.05. The vertical axis is the

demanded power, (1� bc), and the horizontal axis is the robustness R̂ðn;bcÞ for sample size n and level

of significance a (which is specified by za or za/2 in Equations (12) and (13)). That is, the estimated
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Figure 2. Robustness of power calculations for one-sided hypothesis tests
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Figure 3. Robustness of power calculations for two-sided hypothesis tests

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2007; 18: 189–203

DOI: 10.1002/env

196 D. R. FOX ET AL.



effect size and standard deviation, ~D and ~s, can err by a fraction as large as R̂ðn;bcÞ without

jeopardizing the requirement that the power exceed (1� bc) at level of significance a.

These curves accord with intuition. For example, for any required level of power, immunity to

parameter and knowledge uncertainty (robustness) is obtained by taking a larger sample size.

Conversely, for any fixed level of robustness, the power of the statistical test increases as more samples

are taken. The curves are plotted for 0�R� 1. For R> 1 we have h¼ 0 and the power which can be

achieved is constant at the value reached with R¼ 1.

Furthermore, as robustness approaches unity, the statistical power approaches the level of

significance (which is a¼ 0.05 in these figures).

More importantly, these results measure how much robustness to uncertainty can be bought by

additional samples, and demonstrate the opposing influence of effect size and standard deviation on

power and robustness. Figure 2c, for example shows that for the one-sided case, a minimum power

demand of 0.8 can bemet with 12% robustness with only 10 samples so long as the standard deviation is

approximately the same as the effect size. For a further 40 samples the design parameters can be up to

48% wrong and still achieve the same minimum power demand (a 36% increase in robustness). The

same is true for the two-sided case, except in this instance the additional uncertainty associated with the

direction of change in effect reduces the robustness to uncertainty in the initial estimates for sample

sizes.

Collectively, Figures 2 and 3 illustrate the result of increasing effect size over the standard deviation,

that is the absolute value of the standardised effect size>1. If the effect is twice as large as the standard

deviation, then a minimum power demand of 0.8 is satisfied with a robustness of 0.44 for the one-tailed

test (Figure 2e) and robustness of 0.39 for the two-tailed test (Figure 3e) using n¼ 10. A further 40

samples only purchases about a 26% increase in robustness for either the one- or two-tailed tests.

Clearly the rate of return diminishes rapidly for both power and robustness to uncertainty as the

magnitude of the standardised effect size increases—it is easy to spot big ‘standardised’ changes.

Figures 2a,b, and 3a,b illustrate the result of increasing the standard deviation over the effect size, that

is the absolute value of the standardised effect size<1. In these cases the manager must work very hard

to achieve minimum power. For example, for a one-tailed test for which the standard deviation is twice

as large as the effect size (Figure 2a), a sample of n¼ 50 has robustness of only 0.17 for demanded

minimum power of 0.8. To increase the manager’s immunity to uncertainty to a modest 0.5

would require the purchase of an additional 173 samples! As the standard deviation increases

sample sizes must be very large to achieve minimum power with any level of robustness (Figures 2a,b

and 3a,b).

4. INFO-GAP FORMULATION FOR DISTRIBUTIONAL UNCERTAINTY

While the preceding formulation and analysis affords useful insights into the info-gap formulation for

dealing with uncertainties in design parameters {D, s}, it ignores uncertainties in the assumed

distribution that underpins the power calculations. As previously remarked, the CLT asymptotically

guarantees the applicability of the normal distribution but in environmental studies, situations arise

where assumed normality can be tenuous. This naturally leads us to consider the effects of violations of

the normality assumption on statistical power. The next section develops an info-gap approach to this

problem for the one-tailed hypothesis test (Equation (1)). The extension to the two-tailed case

(Equation (4)) is then straightforward.
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4.1. Single mean, one-tailed test

As noted in Section 2.1, the critical region for this a-level test is X > C�ðaÞ where C�(a) is determined

such that P½X > C�ðaÞjm ¼ m0� ¼ a. Hereafter f(x; m) will denote the pdf of X evaluated at x. We

assume this distribution has mean m. Furthermore, we will assume that f(x; m1)¼ f(x� d; m0). That is,

the distribution under H1 equals the distribution under H0 shifted to the right by a distance d. Thus for

any level of significance a, non-negative effect size d, and pdf f(x; m), we have

1� a ¼
Z C�ðaÞ

�1
f ðx;m0Þdx (15)

and

bðf Þ ¼
Z C�ðaÞ

�1
f ðx� d;m1Þdx ¼

Z C�ðaÞ�d

�1
f ðx;m0Þdx ¼ 1� a�

Z C�ðaÞ

C�ðaÞ�d

f ðx;m0Þdx (16)

For the info-gap formulation, we consider the sampling distribution of the test statistic to be uncertain

(e.g. violations of the CLT due to small sample size; a parent distribution having extreme third and/or

fourth moments). Our objective is to determine a sample size that provides an adequate level of

robustness to uncertainty in the sampling distribution while guaranteeing a minimum power

requirement will be met. Thus, we assume that the actual sampling distribution is unknown, but our best

estimate is ~f ðxÞ, which as before depends on the sample size, n. We assume that ~f ðxÞ is not flat anywhere
in its domain. As in previous sections, we will assume a fractional-error info-gap model:

UðR;~f Þ ¼ ff ðxÞ : f 2 P; j f ðxÞ � ~f ðxÞj � R~f ðxÞg; R � 0; x 2 < (17)

where P is the set of all pdfs on the domain of x. We assume also that the elements of UðR;~f Þ are such
that b( f ) in Equation (16) is continuous in f (x).

Ideally, wewould like b to be small. However, since the sampling distribution is uncertain we cannot

guarantee that the power ð1� bðm1ÞÞ calculated using Equation (16) is correct. Let 1� bd be the power

which is demanded by the analyst. That is, the analyst requires b(m1)� bd. The robustness associated

with a sample of size n, with the requirement that b(m1) be no greater than bd, is the greatest horizon of
uncertainty R up to which all pdfs in UðR;~f Þ guarantee b(m1)� bd. That is

R̂ðn;bdÞ ¼ max R : max
f2UðR;~f Þ

bð f Þ
 !

� bd

( )
(18)

For convenience, we denote the inner maximum in Equation (18) by g (R). Thus the robustness is the

greatest value of R such that g (R)� bd. Since the uncertainty sets UðR;~f Þ are nested with respect to R,
we see that g (R) increases as R increases. Hence the robustness is the greatest value of R at which

g(R)¼ bd. This robustness, obtained from g(R), is evaluated for a specified value of bd and C�(a). We

use g (R) to find the critical value, C�(a) whose robustness is maximal at the specified bd. Thus, the

inner maximum in Equation (18) requires us to find the maximum of b(f) on UðR;~f Þ at fixed R. That is,
we must solve the following optimisation problem:

f̂ ¼ argmax
f

bð f Þ such that f̂ 2 P; ð1� RÞ~f ðxÞ � f̂ � ð1þ RÞ~f ðxÞ (19)

We will develop an explicit algorithmic solution to this sub-problem. Denote by bð f̂ jC�ðaÞÞ that b
obtained using the pdf identified in Equation (19) and denote this pdf by f̂ ðxjC�ðaÞÞ. Note that by
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Equation (15), for fixed R, each C�(a) and f̂ corresponds to a unique a, denoted a (C�) which can be

inverted to obtain C�(a) and for which

gðRÞ ¼ bðf̂ ðxÞjĈ�ðaÞÞ (20)

Solution to the sub-problem in Equation (19).

Note that b(f) in Equation (16) is a linear and continuous function of f(x), so its extreme values, at

uncertainty R, occur on the boundary ofUðR;~f Þ (Kelly and Weiss, 1979, theorem 13, p. 209). Thus, the

choice of f(x) which maximizes b(f) will switch between the upper envelope ð1þ RÞ~f ðxÞ and the lower
envelope ð1� RÞ~f ðxÞ.2 In order to maximize b(f) on UðR;~f Þ it is necessary to choose f as large as

possible when x � C� � d and as small as possible elsewhere, recalling that f is a proper pdf. It is

therefore necessary to determine where the pdf switches between the lower and upper envelopes. To

this end, define the following ‘upper cut set’ for the nominal pdf:

XðyÞ ¼ fx : ~f ðxÞ � y and x � C�ðaÞ � dg (21)

In order to maximize b(f), f̂ needs to be ‘large’ in X(y) for some y, and contained in UðR;~f Þ. X(y) is the
set of x values in ð�1;C�ðaÞ � d� for which ~f ðxÞ is larger than y.

Next define the following partial complement of X(y):

X2ðyÞ ¼ ð�1;C�ðaÞ � dÞ� � XðyÞ (22)

X(y) is a set of x values in ð�1;C�ðaÞ � d� on which ~f ðxÞ is larger than on the partial complement

X2(y). That is:

min
x2XðyÞ

~f ðxÞ � max
x2X2ðyÞ

~f ðxÞ (23)

Choose a value ys defined implicitly as: Z
XðysÞ

~f ðxÞdx ¼ 1

2
(24)

Now ys is unique since ~f is nowhere flat. If ~f ðxÞ is uni-modal then XðysÞ is a single interval. If ~f is
multi-modal the XðysÞmay contain disjoint intervals. We make no assumption about the modality of ~f .
We denote integrals such as Equation (24) by ~F½XðysÞ� where ~F is the cdf corresponding to ~f . Next,
consider the following pdf:

f̂ ðxjC�ðaÞÞ ¼
ð1þ RÞ~f ðxÞ if x 2 XðysÞ
ð1� RÞ~f ðxÞ if x 2 X2ðysÞ
ð1� RÞ~f ðxÞ if x > C�ðaÞ � d

8<
: (25)

where, from the definitions of X(y) and X2(y) in Equations (21) and (22) and the choice of ys in Equation

(24), one can show that:

~F½X2ðysÞ� þ ½1� ~FðC�ðaÞ � dÞ� ¼ ~F½XðysÞ� (26)

2We need only consider values of R� 1 in order to cover relevant values of demanded power.
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Equation (26) guarantees that f̂ is a proper pdf because the �R~f ðxÞ terms in Equation (25) cancel out

upon integration. Hence f̂ belongs to the info-gap model at uncertainty R.

The pdf in Equation (25) attains the greatest possible values in ð�1;C�ðaÞ � d� which are allowed
by UðR;~f Þ, and it does so on the set of largest possible measure.

It is evident that f̂ ðxjC�ðaÞÞ in Equation (25) is the solution of the optimisation problem in Equation

(19). To understand this we note the following points. First, no pdf inUðR;~f Þ can equal ð1þ RÞ~f ðxÞ on a
set whose integral on ~f is greater than ½ since it would not integrate to unity. In order for ~f ðxÞ to be a

proper pdf, it is necessary that the þR term cancel out the �R terms. That is:

Z
XðysÞ

~f ðxÞdx ¼
Z

X2ðysÞ

~f ðxÞdxþ
Z1

C�ðaÞ�d

~f ðxÞdx (27)

However, from the definition of the sets X(y) and X2(y), and since ~f ðxÞ is a pdf:

1 ¼
Z

XðysÞ

~f ðxÞdxþ
Z

X2ðysÞ

~f ðxÞdxþ
Z1

C�ðaÞ�d

~f ðxÞdx (28)

Thus, if the integral on the left-hand side of Equation (27) exceeds ½, then Equation (28) is violated.

Second, ys has been chosen so that f̂ ¼ ð1þ RÞ~f on a set whose integral on ~f is equal to ½. Third, this

set has the largest possible values of density as shown in Equation (23). Thus, ðxjC�ðaÞÞmaximizes b(f)

subject to Equation (19). The value of b(f) for the pdf in Equation (25), for this value of C�(a), is:

bðf̂ jC�ðaÞÞ ¼ ~FðC�ðaÞ � dÞ þ R~F½XðysÞ� � R~F½X2ðysÞ� ¼ ~FðC�ðaÞ � dÞ þ R
1

2
� ~F½X2ðysÞ�

� �
(29)

where we have used the fact that ~F½XðysÞ� ¼ 1=2. Furthermore, we see that b(f) increases as R

increases. This expression for bðf̂ jC�ðaÞÞ is precisely g(R) in Equation (20). As explained in

connection with Equation (20), the robustness is the greatest value of R for which g (R) in Equation (20)

does not exceed bd.

4.2. Illustrative example

We consider the one-tailed hypothesis testing situation given by Equation (1) and without loss of

generality, set m0¼ 0. We initially assume known design parameter values of s¼ 1 and d¼ 0.5. The

effect of uncertainty in the nominal pdf (assumed to be normal) for small sample sizes is investigated by

the application of Equations (25) and (29) for n¼ 3, 4 and 5 (Figure 4). It is evident from Figure 4 that

the power to detect an increase of 0.5 in m with these small sample sizes is low. Nevertheless, this

situation is not atypical in ecological applications such as monitoring rare or threatened species. If the

attribute (random variable) being observed is non-normally distributed in the population, then the

assumption of normality for the sampling distribution of the test statistic ðXÞ will be erroneous,

resulting in potentially large discrepancies between the nominal and actual type I and type II errors.

The utility of Figure 4 in such situations is that the researcher can assess the immunity to violation of

the normality assumption gained by the ‘purchase’ of extra samples. For example, at a nominal power

of 0.25, the robustness to severe uncertainty in the normality assumption increases from 0.1 with n¼ 4

to approximately 0.4 with n¼ 5.
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Figure 4. Robustness of power calculations for uncertainty in pdf for one-sided test
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Figure 5. Robustness of power calculations for both parameter uncertainty and pdf uncertainty for one-sided test
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In concluding this section, the combined effect of parameter and distributional uncertainty is

investigated for the previous example with n¼ 3 (Figure 5). It can be seen from Figure 5 that the impact

of distributional uncertainty is uniformly greater than parameter uncertainty and, perhaps more

importantly, the combined effect is greater than the sum of the individual effects.

5. CONCLUSIONS

This paper introduces a new dimension to conventional power and sample size calculations. Info-gap

theory was developed to provide a logical and consistent approach to quantifying the impact on

assumed optimality arising from severe uncertainty in model parameters and functions (Ben-Haim,

2006). Initial info-gap applications focused on engineering design problems. Its application to

statistical power and sample size analysis (PSA), particularly in the context of environmental sampling,

appears here for the first time. We believe it is a potentially powerful adjunct to conventional practice

given the pervasiveness and ‘fragility’ of PSA. This fragility arises from the fact that the results of PSA

are likely to be severely wrong when there is high uncertainty in critical parameters (such as the

population variance and the effect size) and/or extreme violations of the assumed normal distribution.

The latter situation is characteristic of many ecological studies where small sample sizes are the norm

and the variable of interest is decidedly non-normal. The salient feature of the info-gap approach is that

it explicitly acknowledges these problems thereby allowing the researcher to assess ‘how wrong’ he or

she can be in the specification of an effect-size, say while still meeting some demanded power criterion.

While our approach may not be perfect and some residual conceptual difficulties remain3 we

nevertheless believe these are outweighed by the additional insights gained by the explicit recognition

and treatment of uncertainty at all levels of PSA. If nothing else, we believe the info-gap approach will

engender a greater awareness among environmental researchers of the potentially seriously flawed

decision-making that can arise from the routine application of conventional PSA.
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