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ABSTRACT

In this paper we provide a metfodology for calibration problems of the form
Y = f(X) where measurements on Y contain two sources of variability, namely
instrument error in the determination of Y and uncertainty in X.

The procedures presented are sufficiently general to cater for non-linear

functions f, as well as correlated errors in X and Y.

We commence with a review of previous work associated with the so-ca]]éd
classical and inverse methods of regression.

A procedure due to Mandel (1984) has been adopted which removes the ambiguity
associated with the two regressions. The successful application of this
approach however, requires prior knowledge of the error covariance structure
associated with X and Y. Given certain distributional assumptions and some
simplifying approximations we show how estimates of the error variance
components may be extracted from the calibration data.

A practical application associated with the determination of vehicle speed

by airborne observation is given.

KEYWORDS Calibration, inverse regression, classical regression,

components of variance.



The Calibration Problem

In calibrating somé instrument, we take readings Y on some physical
process X and use the empirical relationship between Y and X to
‘predict' the value of X given some future reading y;.

In most instances it is assumed that the relationship between Y and
X is Tinear, and thus estimation of the parameters o and B8 in the

regression of y on x is readily achieved via OLS, to give :

Y1. =-a +8 X1. (1.1)

In contrast to the 'normal' use of equation (1.1) where some new
value of Y is to be predicted for a given value of X = x9 , the
requirement here is'to predict xy , having observed Y = yq . In the
so-called ‘classical' calibration method we obtain the estimate-io

by a simple re-arrangement of the terms in equation (1.1) viz :

> Yo - @
X0 ‘- ‘—“‘g""“‘ (1.2)

An alternative, and equally appealling approach is to treat X as
dependent and regress X on Y . This procedure is known as the 'inverse'
calibration method for which we obtain &* and é* as our parameter
estimates in the regression

X, = oF+e"y, (1.3)
The problem of deciding between these two methods is not new.
Eisenhart (1939) suggests that both methods were in common use up to
the time of his paper, although firmly rejects procedures based on
equation (1.3) arguing that the least-squares line should be fitted to
the variable which is observed with error. Krutchkoff (1967,1969), on
the other hand, advocates the use of inverse calibration and presents
the results of simulation studies in which the relative merits of each

method were assessed.



A number of papers critical of Krutchkoff's work have since appeared,

although general agreement on the 'best' apprcach has not been reached.
The problem, it seems, stems from the fact that there is no universally ‘
accepted properties of an optimal estimator in the calibration

problem.

Williams (1969) pointed out that in the case of normally distributed
errors, the classical estimator has an undefined expectation and
infinite variance and as such any comparison based on mean squared
error (MSE) is rendered meaningless.

Berkson (1969) advocates the concept of Pitman closeness as a means

for comparison although notes that estimators obtained by the inverse
method are not consistent nor asymptotically unbiased. This Tack of
consistency was also observed by Madansky (1959).

Martinelle (1970) shows that the MSE for the inverse estimator is less

than that of the classical estimator provided

—_— 1
2
(xg = X)2 < s2[2+ —=]
8%s,

where X and si are the sample mean and (biased) sample variance
respectively and 6 = B . Furthermore, Martinelle suggests that when
ezsi is large, then there is little advantage in using the inverse
method.

Lwin and Martiz (1980) proposed the 'non-linear' predictor of xg

which was shown to have desirable properties not shared by other methods.
In a later development, Lwin and Maritz (1982) considered a more general

class of estimators and in particular demonstrated that

x*(Y) = (1 + 6253()'1‘?+ ezsf( (1 + e2s>2()'l [(Y -a )/B]
is optimal in the sense that it results in smallest MSE when applied

to previous Yi's. This estimator makes use of the current observation
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y as well as previous X; values of the calibration experiment.

Much work has also been devoted to other aspects of the calibration
problem including extensions to the multivariate setting. Anders
(1973), for example, considers the problem of finding simultaneous
confidence intervals in the inverse regression. Spiegelman (1984)
has explored the use of calibration curves in quality-control situations

while Brown (1982), Wood (1982), Spezzaferri (1985), Oman & Wax (1984)

and others have examined the use of multivariate calibration techniques.

Oman (1984) has derived a statistic, similar in nature to Cook's dist
to measure the influence of a particular observation on future estimates
from the calibration curve. Spiegleman (1984) has similarly
considered the role of regression diagnostics in the calibration problem.

While much discussion continues on the relative merits of the inverse
and c]assica]vapproaches, a further complexity is introduced when one
considers situations in which both X and Y are measured with error.
Berkson (1950) formally raised the question of the existence of two
separate regression Tines in such cases. Small-sample properties
of~é were investigated by Halperin and Gurian (1971) and under certain
prescribed conditions, results for E[é] and MSE [é] were derijved.
Clutton-Brock (1967) argues that there is "no paradox of two regression
Tines" and suggests that in the case of errors in both X and Y, the
maximum 1ikelihood estimates lie between the two separate regressions
of Y on X and X on Y.

In the remainder of this paper we exploit a method due to Mandel (1984)
in which the problems associated with regression in the case of both
variables subject to error are largely removed. Furthermore, we show
how the procedure is readily adapted to the calibration problem and how
the ambiguities of the inverse and classical methods are avoided.

We now describe in more detail the method due to Mandel.
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Fitting straight lines when both varjables are subject to error

We commence with the model

Yi = a + B X, i=1, ..., N (2.1)

The assumptions underlying the usual fitting procedure are :

(i) the x values have no error

(i) the y values are subject to error - in particular €, is the
error associated with Ys- These €5 represent a random
sample from a population with mean zero and variance oé

(iii)  Cov [ei,ej] =0 ¥ i, 3d, 1#3.

By relaxing condition (i), we now allow the x's to be affected by an
error denoted by &, where the 61 also represent a random sample from

some population having zero mean and variance o% .

Mandel shows that provided the quantity

8]
¢ =

<< 1

oG
€ 6

and that p = 0
then the OLS conditions still apply and that o« and 8 may be estimated

in the usual manner.
A more general situtation in which the OLS conditions do not apply

is summarized by relations 2.2 (a), 2.2 (b), and 2.2 (c).

E[Yij = o+ B8 E[X,] (2.2 a)
o2
;‘g = A (2.2 b)

p(e,@) = D ' (2.2 C)




Under OLS conditions we find that each experimental point is projected
vertically onto the:fitted line. In the case where both variables are
subject to error the angle of projection, y will depend on X .
The method proposed by Mandel relies on the construction of two new
variables u and v, related to x and y, but formed in such a way that

(

the OLS conditions are at least approximately fulfilled for (u,v)

The (u,v) data are obtained as follows :

U, = xg ¥ kyi ' (2.3 a)

Vo =y, - bxi (2.3 b)

for some constants k and b.
It is shown by Mandel that, while k and b are theoretically unknown,

they can be approximated by solving equations (2.4 a) and (2.4 b).

Sy + ks
h= XYY (2.4 a)
S + ks
XX Xy
_b -9
k = - be (2.4 b)

where 6 is defined by

8 = o/\ (2.4 ¢)
and Syx? syy and sxy are the usual sums of squares and cross-products
defined by

(2 %)
(% y:)?
17
Sy © ;y]? - N . | (2.5 b)
(in)(Zyi)
SX‘y = %xiyi ST (2.5 C)



-6-

Equations (2.4 a) and (2.4 b) define a quadratic in b which may be

readily solved using

- Z 2 - Z Z
. (Syy XSXX) t\/(syy Asxx) 4(Sxy esxx)(esyy Asxy)

In addition, it is shown that the estimate of B8 1in equation (2.1)

is equal to b as defined in (2.6) and that o is found in the usual

manner ie. a= y - 8% .

In the context of statistical calibration, Mandel's procedure is most
appealing since the choice between the inverse and classical regressions
does not arise. Furthermore, the uncertainty associated with a predicted
value is the same, regardless of whether we consider X as the independent
variable and Y as the dependent variable or vice-versa.

In the development of his approach, Mandel has tacitly assumed that

og , a% and o are all known constants. This will rarely be the case in

practice and thus these quantities need to be estimated. It is this

problem of estimation with which we now concern ourselves.

A model for the error components

The method of variance component estimation in the calibration problem
has been discussed in detail by Fox (1987).

A generalization of these methods is now presented which allows for
the possibility of correlated errors (the two error components were

previously assumed to be independent).
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We define a general calibration probiem having the following components :

X, is the true state of nature (unknown)

X; is the :assumed state of nature

Yi is a measured response corresponding to Xi

Y5 ;s the true value of the response for the state of nature

i

Furthermore, we have

Xi =X+ Ui and Yi =yt Vi

where Ui and Vi are random errors reflecting

(a) our Tless than perfect knowledge of the true state of
nature, and
(b) our inability to make error-free measurement,
We assume in our calibration problem that the data obtained consist
of pairs (Xi’Yi) and that the underlying response-generating model

is of the form

Y] = f(Xi) + V1
=l + U) + v, (3.1)
Using a first-order approximation we have
Y,z f(xi> + Uifl(xi) + V. (3.2)

In what follows we shall assume that Ui and Vi have the bivariate

normal distribution

1 1 Ui Vs v

h u,,v,) = — exp (=4 (= ) [ - 2 i,
U ,V1<1 1) 2‘TTO’O' /_pz p (l_p )Eog 2 OUOV —3':}}
(3.3)
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From (3.2) it is apparent that

1

= Var[Yi] g2 + g2 [f'(xi)]2 + 2f'(x1)Cov[U1,Vi]

v u

= g2 + gﬁ [f'(xi)]z + 2f'(x1) p oo

v uv (3.4)

Our problem now is to estimate cﬁ, 03 and p given values of s2
at various values of X
We note from equation (3.4) that the model is no Tonger linear due

to the simultaneous presence of cﬁ ,03 0, and o .

Estimation of the covariance structure for the components of errbr
As described in Techn{ca1 report 3/87, we have at each X; an

estimate, S2 , of o%
S% is assumed to have the pdf

m m-1 ,1
952(51?) = T (Sf) (O—g)me v (4.1)
i i
where m = (nél) and s$ >0 and n is the number of replications
at each X;

From equation (4.1) we obtain the likelihood function

s oy _ N N 5? N m-1,1m
L(0%,s%) = K'{exp[-m Z =11 (%) <E?)
o9 .2 i
=]
(4.2)
m
_m
where K = TTEB'




and the log-likelihood function

N s2

N N
InL=NInK-m ] (=)-m o+ (m-1) ] 1n (s?)
j=1 o3 i=1 i=1
(4.3)
Our aim is thus to estimate 0% such that equation (4.3) is
maximized. Specifically
2..2 N
.2, = - <2
max F(ov,ou,p) 151 (In W, siwi) (4.4)
_ 1
where W, = = and
1 o'_i
o% = 06 + 03 [f'{(x)]2 + 2f'(x) po 0
subject to
03 2 0
06 > 0
-lsps+1
Instead of maximizing (4.4), we may choose to minimize
2. .2 N
262:5) = 2w, -
@(ov,ou,p) izl(siwi In Wi) (4.5)

We have used the NAG routine EPALAF, a modified Newton algorithm, as
described in the NAG reference manual (1977).

A brief description of the procedure follows.




-10-

4.1 Parameter estimation

Let ¢ denote the vettor of parameters to be estimated. In this case

T_r2 2
¢ [ov,cu,o]

We wish to find values #* of ¢ for which &(¢) 1is minimized.
We commence with a give. point 6; and proceed to generate a sequence o

points 65,63 . . . which we hope converges to the point 6* at which

o(6*) is minimum.

Let H(e) be the Hessian matrix of the function ¢(8) and g(s) = é% the
gradient vector of ¢(8)
Then, the 1th iteration of the Newton method is
) = 9, - 4!
Ui+l % 7% (4.6)
Thus, for the present case we have
IR
2
acv
30
q(e) = ey
%
32
! 30 J
and
T 32 320 520
322 302302 apaoz
v u v v
2@ 82® 2
H(s) = z 2 2 82®
~ o acuacv Bou 3ou8p
320 329 329

Bpaci Bpaca 320
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We now demonstrate the procedures discussed in the preceding sections.

An example : Determination of vehicle speed by airborne observation

The problem of determining the speed of a vehicle by measuring from an
overhead aircraft the time taken to travel some prescribed distance
c is discussed in reports by Fox (1985, 1987).

In this case the calibration function takes the form

- £
f(xi) - X;

where X; is an assumed speed.

The components of the gradient vector and Hessian matrix are given in
Appendix A while a listing of the'computer program may be found in
Appendix B.

We commence by validating the procedure using simulated data from a
bivariate normal distribution for which 03, 05 and o are all known.
In addition, by repeating the procedure a number of times some

idea of the sampling variability of the parameter estimates may be

obtained.

- 5.1 Model Validation

For the purpose of the exercise we used equation (3.1) to obtain at
each X; 30 values of Yi . The error components us and Vi were

generated from the pdf represented by equation (3.3) having

oﬁ = 4.5, 03 = 0.85 and p = 0.8 . Values of s% were then

obtained at each X; using the 30 observations in each case. The
(xi,sﬁ) data was then used as input to the modified Newton programme
(Appendix B) and parameter estimates~&3 ,-83 and o obtained.

By repeating the procedure ten times we were able to-assess the sampling

variability in oﬁ ’06 and o .

The results of these simulations are given in the following table.
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With reference to Table 5.1, we see that in most cases the estimators
are in close agreement with the true parameter values, although we

note some evidence Sf bias.

A1l three parameters have, on average, been over estimated by about
half a standard deviation. This is not totally unexpected since our
expression for 0% (equation 3.4) 1is, after all, only a first-order
approximation. Presumably the degree of bias will be very much
dependent on the exact nature of f(x) and how well it is represented

by a first-order approximation.

It is difficult to draw any specific conclusions from the above results.
Further experimentatioh would be required to assess the effects of
different values of n and different parameter values, 03 , 03 , and o.
Nevertheiess, as a general methodology designed to extract the components
oﬁ ,03 and p , the above results give us no reason to modify the
procedure.

We now apply this method to actual experimental data in which a

vehicle was timed by an observer in an overhead aircraft. A detailed

discussion of the experimental procedure is given in Fox (1985).

Application to air survellance method

The procedure described in 85 is now applied to the following test data.
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Assumed speed Sample variance
xi s%
85 0.0441126
90 0.0483296
95 0.0216649

100 0.0162971
105 0.0057608
110 0.0063680
115 0.0183088
120 0.0007868
125 0.0080210
130 0.0028164
135 0.0016314
140 0.0027468

We find convergence of the iterative procedure at the point
03 = 0.0072 ; 05 = 1.3250 H p = 0.8981 .

In technical report 3/87 in which p was assumed zero we

obtained .oz = - 0.0035  and 85 = 0.6614 . Clearly then,
the spurious result for~8$ is an artifact of incomplete model
specification.

The present results suggest that the vériabi]ity (as measured by
the standard deviation) in maintaining constant vehicle speed

is about 1 km/hr; the variability associated with making time
measurements is of the order of 1/10 thvof a second and that the
two errors are strongly (and positively) correlated. These results
are not surprising and tally with what one would intuitively expect.

With these estimates, we are now in a position to 'calibrate' the

method according to the procedure outlined in § 2.
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Calibration of the air surveillance method

We first require an estimate of A which is defined to be the ratio
of the error variance for Y to the error variance for X.

From equations (3.1) and (3.2) we have

Y1 = f(Xi) + V1
= X% + Vi
where
X; = f(Xi)
Thus

Var[Xi] = var[f(X,)]
Var[f(xi) * U; f'(Xi)
= [f'(xi)]zcﬁ (7.1)

Now, Var[Yij = 0% is defined by equation (3.4). We observe that
A = Var[Yij/Var[xij is not constant, although as we will show later,
this has Tittle effect on the final outcome.

We now apply Mandel's regression procedure to the experimental data in

order to estimate a and 8 in the model

Y‘i = q + BX% (7.2)

where Yi is the measured time at speed Xi and X% = fi represents
i

the 'true' time for the assumed speed X

At each X, we compute A and 6 (equation 2.4 c¢). Equation (2.6) is then
solved to obtain b which is our estimate é of 8 in equation (7.2).

For the experimental data we obtain : |

Sx'x! 686.1667

Sx'y 679.7297

674.8906 n = 78.

Syy



Our calculations

are summarized in Table 7.1 below :
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X; A 8 b

80 0.597 0.6939 1.0061
85 0.556 0.6697 1.0060
90 0.514 0.6439 1.0059
95 0.472 0.6170 1.0058
100 0.431 0.5896 1.0057
105 0.394 0.5637 1.0057
110 0.355 0.5351 1.0057
115 0.322 0.5096 1.0057
120 0.290 0.4386 1.0058
125 0.261 0.4588 1.0058
130 0.233 0.4335 1.0059
135 0.217 0.4184 1.0059
140 0.205 0.4066 1.0060

|
Table 7.1: Estimation of é =D

As can be seen from Table 7.1, even though X is not constanf, its
variation is not sufficient to substantially alter b.

three decimal places we obtain-é = 1.006.

~

a is estimated in the usual manner, ije.

@=y-8%

- 0.3238 .

Thus to
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Qur estimated regression model is thus
y = 1.006x - 0.3238 (7.3)

In comparison, we obtain the following models using

(a) ‘classical' regression

and

(b) inverse regression :
y* = 0.9906x (7.4 a)
x* = 1.0072y + 0.1042 (7.4 b)

With respect to equation (7.3) we note that & represents a constant
bias of approximately 0.32 seconds. This is very close to the value
of 0.36 reported previously [Fox (1985), §4.2.1]. Secondly, it is
observed that-é in equation (7.3)'fa1]s between the corresponding
estimates in equations (7.4 a) and (7.4 b).

For equations (7.3) and (7.4 a) we obtain the following calibration

equations :
. ‘0.
R oL
}
. _ y * 0.0655 '
X* = 579306 (7.5 b) }

~

x* , obtained via the inverse calibration method is obtained from

equation (7.4 b) .




We now compare all three estimators.
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True Speed as determined by equation *

Speed (7.5 a) (7.5 b) (7.4 b)
80 79.34 79.02 79.06
85 84.22 83.94 83.98
90 89.10 88.86 88.90
95 93.96 93.78 93.81

100 98.82 98.70 98.72

105 103.67 103.62 103.62

110 108.51 108.53 108.53

115 113.35 113.44 113.43

120 118.17 118.36 118.33

125 122.98 123.26 123.22

130 127.79 128.17 128.11

135 132.59 133.08 133.00

140 137.38 137.98 137.89

* The three equations yield computed times. These are then

converted to a speed over a 500m distance.

In this case the differences between the three methods are negligable.

This is due to the fact that the relationship between independent and

dependent variables is almost perfect and the regression line has

slope very close to 1.

In general, however, such close agreement cannot be expected.
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APPENDIX A : Gradient Vector and Hessian Matrix

We give here computing formulae required to determine the elements

of the gradient vector and Hessian matrix for the components of

variance estimation associated with the example of § 5.

We have :
2 N 2
b w20 n2 - . - .
x(Gv,Ou,p) 1zl(s1w1 ]n W_l)
1
where W, = =
1 g4
3
and 02.=02+——C—5—02-é:- pg o
. 1 Voox.% Tu o x2 u v
i i
A.1 Elements of the gradient vector
T ad 9% ad
(6) =
AN [ 302 902 3p ]
N 903
98 =¥ (w, - w2 s2) =
302 LMY TN P M0
v i=1 v
- N 30%
A = - 2 N
302 z_ (W1 w3 51)802
i=1 u
N 302
a_(b = - 2 2 1
o L iS5
i=1
and
2 .
801. CCOU

A.l




A.2

H(e)

320
52g2

32¢
2 2
aouaov

320

2
Bpacv

329
2
Bpaou

329

34g2

32¢
o
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A.2

c? ceoy
x4 24

1 X']ou
-2c 0 O

2

*3

Elements of the Hessian matrix
is given in § 4.1
} ([w2 - 2s2w3][1 - 1+ #[stwd - w, ][ e )]
j=1 1 i x2g ol
ity

e - 2saallS i

{ W- - S-W- T ———-—-—é- ] - [Ssz_wj[ }
=1 ! b %3 X1Gu oV 7yX 1]
N -2Co, o Cpo co,
Y {[wz - 2s2w3][—2Y9r7 - C 52w2 - W, }
N -2Co o 2 Cpo co
L 0wz - 252wl ———10%5 - 3751 - [stw? - w. I[5, 1}
j=1 ! 1 x2 X3 X3% %Y X2
N 2 Cpo, 2

2 - 2c2yw3lles .V 1fc2w2 -

i=1 i Tu iu
N -2Co, 0.,
I (W - 252wl [—5— 17}
i=1 | T




APPENDIX B : Program Listings B.1

B.1 Mainline programme

{5140UAL0: CTFOXDR, WORKIVARCONP . FOR; 14

double precision x(3),f,q(3),w(30),b1(3),bu(3},y(30),5(30)
comaon k,Y,S
integer iw(d)
open(unit=21, file='varcomp.dat’ status='old’ readonly)
do 1 i=1,30
read(21,210,end=98)y(iJ,s(i)
1 write(h,899y(i),s(i)
639 format(2x,2(1x,f12.5))
98B k=i-1
210 foraat(£6.0,2x,f12.0)
.n=3
liv=j
1w=30
ifail=t
ibound=0
bl (1)=1e-6
b1 (2)=1e-6
b1(3)=-0.99
bu(1)=1eb
hu(2)=1eb
bu(3)=0.99
vrite(5,610)
610  format{//2x,’Enter initial estimates :7)
write(6,650)
£30  format(//2x,'Sigma-squared V=',%)
read(3,300)x(1)
write(b,651)
851  format(//2x,'Sigma-squared U=',$)
read(5,500)x(2)
write(6,652)
652 format(//2x,'Rho=",3%)
read(3,300)x(3)
300 format (f12.0)
call eddlaf(n,ibound,bl,buy,x,f,q,iv,liv,v,lv,ifail)
iflifail.ne.0)vrite(h,b00)ifail
iflifail.eq.1)go to %9
600 fermat (//2x,'Error exit type ',i3,' see NAG documentation’)
writa(6,601}f
urite(h,602)(x(j), j=1,n)
writals,803) (g(j}, j=1,m)
£01 format(//2x,'Function value on exit is 7,f12.6)

02 foraat(//2x,'at the point ',3f3.4)
£03 format(//2x,'The corresponding gradient is’ /10x,3f12.4)
39 stop

end
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4130UAL0: [TFOXDR. ORKIVARCONP. FOR; 14
fROGRAM SECTIONS
Naae Bytes Attributes
0 $CODE 607 PIC CON REL LCL SHR EXE  RD NOWRT LONG
1 $PDATA 284 PIC CON REL LCL  SHR NOEYE RD NOWRT LONG
2 $LOCAL 476  PIC CON REL LCL NOSHR NOEXE RD  WRT QUAD
3 $BLANK 484 PIC OVR REL 8BL  GSHR NOEXE RD  WRT LONG
Total Space Allocated 1831
JNIRY POINTS
Address Type Name
0-00000000 VARCOMPSMAIN
IARIABLES
Address Type Naame Address Type Name Address Type Name
2-00000168 R¥3  $4 I3 1 2-00000180 1%4 IBOUND
b4 134 J 3-00000000 I34 K 2-00000174 134 LIN
-00000170 114 N
BRRAYS
Address Type Name Bytes Dimensions
2-00000120 R¥3 BL FA RN &)
2-00000138 R¥8 BU 24 (3)
2-00000018 R¥8 & 24 (D
2-00000150 134 1M 20 (3
3-000000F4 R%3 § 240 (30)
2-00000030 Ri8 W 240 (30
00000000 R%8 4 (D
300000004 Ri8 Y 240 (30)
pBELS
Address  Label Address Lahel Address  Label Address  Label
11 1 0-00000081 38 0-00000238 99 1-00000019 2107
1-00000083 601 1-00050007 £02' 1-000000F0  £03? 1-00000022 610
[-00000072 652 1-0000000C £39

Address

1-0000007E 500!
100000042 630'

Address Type Name

2-0000017C [34 IFAIL
2-00000178 134 LM

Label Address  Label
1-00000082 609!

1-00000038 4517
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fi1sDUALO: CTFOXDR. HORKIVARCOMP . FOR; 14
FUNCTIONS AND SUBROUTINES REFERENCED
Type Name Type Name

EQ4LAF FORSOPEN

AIMMAND QUALIFIERS
fOR VARCOMP/LIST

JCHECK=(NOBOUNDS , OVERFLOW, NOUNDERFLOW)

[DEBYG=(NDSYMBOLS, TRACEBACK)

/STANDARD=(NOSYNTAX, NOSOURCE _FORM)
[5HOW=(NOPREPROCESSDR, NDINCLUDE, AP, NODICTIONARY, SINGLE)
[HARNINGS=(SENERAL, NODECLARATIONS, NOULTRIX)

[CONTINUATIONS=19 /NDCROSS_REFERENCE /NOD_LINES /NOEXTEND_SOURCE IF77
/NOG_FLOATING /I4 /NOMACHINE_CODE JOPTINIZE

JINPILATION STATISTICS

Run Tige: 0,38 seconds
Elapsed Time: 1.64 seconds
Page Faults: M4

lynasic Memory: 353 pages
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B.2 Subroutine FUNCT2 : Evaluation of function and gradient vector B.2

11$0UA10: (TFOXDR. HORKIFUNCT2.FOR; 13

(ot subroutine funct2(n,xc,fc,gc)
$002 comnon k,y,s
§003 double precision gcind,xc(n),fc,y(30),5(30),v,2,x1,%2,x3,x4
104« write(6,600)xc(1),xc(2),xc(3)
$003 fc=0
$006 ge{1)=0
0007 gc(2)=0
(008 gc(3)=0
(009 do 1 i=1,k
wio z=y(i)1$2
011 w=xe (1) 4xc (222 (1800/2)432-(3600/2) $xc ()X (xc {1 ) $xc(2) )80, 3
0tz w=ily
03 fe=fets(iltu-log(w)
Ll $1={-2¢ (31218002 ((xc (23 /xc(1))$30.5) /2
013 x2=(1800/2) £¥2-xc (3) 318003 ({xc (1) /xc(2))330.5) /2
 jute x3=-(3600/2) $(xc (1223 (2))3%0.5
Y 24=w-s(i)huts2
na ge(1)=ge (1) #xi3x4
1019 gc(2)=gc(2)+x23x4
120 gc(3)=gc (3) +x3%x4

B 74 S S write(6,b00)z,w,y(i),s(i), fc,x1,x2,%3,x4,gc(1),gc(2),qc(3)
22 600 format(/2x,3(3x,{12.6))

023 1 continue

024 ¢ write(6,520)gc(1),gc(2),9c(3)

{023 620 foraat(2x,3f12.6)

0026 return

0027 end

[ROGRAM SECTIONS

Hame Bytes Attrihutes
f $CODE 340 PIC CON REL LCL  SHR  EXE  RD MOWRT LONS
2 $LOCAL 112 PIC COM REL LCL NOSHR NOEXE RD  WRT QUAD
3 $BLANK 484  PIC OVR REL GBL  SHR NOEXE RD  WRT LONG
Total Space Allocated 936

HTRY POINTS
Address Type Name

0-00000000 FUNET?

ARTABLES

Address Type Name Address Type Name Address Type Name , Address Type MNaae
AP-0000000C8 REG FC 2-00000018 (34 | 3-00000000 134 X AP-000000048 [34 N
2-00000000 R¢B W 2-00000010 R¥8 Xi 41 Ri8 X2 E+4 3 4: I &

1t 13 U 2-00000008  R13
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j1$DUALQ: CTFOXDR. WORKIFUNCT2. FOR; 13

JRRAYS
Address Type Name Bytes Dinenéions
Ap-000000108 238 &C (1
1-000000F4 R¥8 § 240 (30)
AP-00000008@ R38 IC i (1)
3-00000004 R38 Y 240 (30)
ABELS
Address Label Address  Label Address Label
b 1 3 8007 b+ 8207

JINCTIONS AND SUBROUTINES REFERENCED
Type Hame

R NTH$DLOG

(0MMAND BUALIFIERS
FOR FUNCT2/LIST

/CHECK={NOBOUNDS, DYERFLOH, NOUNDERFLON)

/DEBUG=(NOSYMBOLS, TRACEBACK)

/STANDARD=(NOSYNTAY, NOSOURCE _FORM)
/SHOW=(NOPREPROCESSOR, NDINCLUDE, MAP, NDDICTIONARY, SINGLE)

THARNINGS= (GENERAL , NODECLARATIONS, NOULTRIY)

/CONTINUATIONS=19 /NOCRDSS_REFERENCE /NOD_LIMES /NDEXTEND _SOURCE /F77
/NOG_FLOATING /I4 /NOHACHINE CODE /OPTIMIZE

IHPILATION STATISTICS

Qun Time: 0,49 seconds
Elapsed Time: 1.28 seconds
Page Faults: 354

Dynamic Hemory: 320 pages
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B.3 Subroutine HESS2 : Evaluation of Hessian Matrix

J[s1$DUA 102 [TFOXDR. NORKIHESS2. FOR; 3

{001
1002
11003
004
1005
b
2 07
M08
09
e
o
e
a3
s
13
m7
ns
s
20
2t
n2
-#023
‘24
1023
26
027
1029
1029
103
031
032
1033
1134

subroutine hess2un,xc,heslc,lh,hesdc)

cosaon k,y,s

double precision xc(n),neslc(lh), hesdc(n),x1,x2,x3,x4,%5
double precision x6,x7,x8,x9,x10,x11,y(30),5(30),v,2
heslc{1)=0

heslo(2y=0

hesle(3)=0

hesdc{1)=0

hesdc(2)=0

hesde (3)=0

do 1 i=1,k

z=y(i)182 ‘
v=xe (1) +xc (20318007 2) 182- (3600/2) $xc (32 (xc (1) 12 (2))1280.5
w=1/v

x1=25(w323)3s(i ) -vit2

$2=w-5(i ) 3vix2

x3=(1800/2) 382-{ (xc (1) /xc(2)) £30.5) $1800%xc (3)/z
14=1-(1800%xc (3) /28 (xc (2) /3¢ (1))120,5)
15=-1800%xc (3)/ ((xc (1) $xc(2)$20.5) 82)
x6=~(3600/2) % (xc (1) 2xc (2))3%0.5
£8=-1800/2%(xc (2) /xc(1))$$0.5

£7=x8

x9=-1800/z2{xc (1) /xc(2))£50.5
heslc(1)=heslc (1) #{xi3x3fx4+0, 52x21x5)
heslc{2)=heslc(2)+(x12xbExd+x28x7)
heslc(3)=heslc{I)+{x13x63x3+x28x9)
x10=-(1B00%xc () Lxc (2)430.5) / (z¥xc (1) $21.5)
211=-(1800%xc {3 3xc (1) X20.5) /(232 (D $31.5)
hesde (1)=hesde (1) +(x1%x4%32-0.52x23x10)

hesde (2)=hesdc (2) +(x13x33%2-0. 52x23x1 1)
hesde(3)=hesdc (3)+(x1$x61%2)

continue

return

end

B.3




;HDUAIO:[TFUXDR.HDRK]HESS2.FDR;5

:RUERAH SECTIONS
Nane

0 $CODE

2 $LOCAL

3 $BLANK

Total Space Allocated

'&TRY POINTS
Address Type Naae

0-00000000 HESS?2

TRIABLES
Address Type Naame

200000030 134 I
1t Rig W
2-00000008 Rf8 X2
2-00000020 R$8 Y6
2-00000028 R13 1

4RRAYS

Address Type Name
IP-00000014€ R¥8 HESDC
AP~0000000C8 REB HESLC
3-000000F4 Ri8 S
-|\P-000000088 R¥8 XC
3-00000004 Ri8 Y
WBELS

Address Label

41 1

-27-

Bytes Attributes
649 PIC CON REL LCL SHR EXE
176 PIC CON REL LCL NOSHR NOEXE RD
484  PIC OVR REL GBL  SHR NOEXE RD
1309
Address Type Name Address Type
3-00000000 134 X AP-000000108 I34
2-00000000 R¥8 X1 3% Ri8
2-00000010 R:8 13 2-00000018 R33
b $3 Rig 17 b4 Ri8
Bytes Diaensions
SN
3 S
240 (30)
L QRS 9
240 (30)

RD NOWRT LONG

HRT QUAD
NRT LONG

Naae

LH
110
"
i

Address Type Name

AP-000000048 I34 N

1 Ri8 11
34 Rx8 X5
n Ri8 X9
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%rsDUAIO:[TFUXDR,HDRK]HESS2.FOR;5
OMHAND QUALIFIERS
FOR HESS2/LIST

JCHECK=(NOBOUNDS, DVERFLDW, NOUNDERFLOW)

/DEBUG=(NOSYMBOLS, TRACEBACK)

/STANDARD=(NOSYNTAX, NOSOURCE_FORM)

/SHOW=(NOPREPROCESSOR, NOINCLUDE, NAP, NODICTIONARY, SINGLE)
[WARNINGS= (GENERAL , NDDECEARATIONS, NOULTRIX)

JCONTINUATIONS=13 /NOCROSS_REFERENCE /NOD_LINES /NOEXTEND SOURCE /fF77
/NOG_FLDATING /I4 /NOMACHINE_CODE /OPTIMILE

EMPILATION STATISTICS

Run Time: 0.569 seconds
flapsed Tiae: .96 seconds
Page Faultse 366

ynaaic Mesory: 358 pages
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