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ABSTRACT
The problem of simple linear calibration is not new and
dates back to the late 1930's. In 1982 Brown presented a number
of important results for the multivariate case. In this paper we
extend Brown's work to cover the situation where one is

interested in calibrating for an unknown ¢~vector X on the basis
of an observed p-vector Y given that k21 components of X are

fixed in advance.
An outline of the theoretical development in the

multivariate normal case will be given and the procedure
illustrated with the application to previously published data.

1. Introduction

The task of calibrating an instrument or measuring device is
something that most people have had some experience with. In its
simplest form we take readings Y on some physical process X from
which an empirical model of the relationship between Y and X is

established. This model can then be used to 'predict' the value
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of X given some future observation y,. If we assume a linear
statistical model (although not necessarily linear in Y and X) we

can write :
Y=f,+ 5X+ ¢ (1.1)

where J, and 4, are unknown parameters and { is a random error
component.

Using OLS we may estimate B, and f; in the usual manner to
obtain a predicted Y (denoted by Y ) as :

- ~

Y = B+ % (1.2)

Note, however ,that whereas in regression we use equation (1.2)
directly to predict a value of Y for some given X=x, the problem
in a calibration setting is reversed. In this case we wish to
predict X given a future observation Y,- Exactly how this is best
achieved has been the subject of considerable discussion (for
example see Lwin and Maritz (1980),(1982)). Berkson (1950)
formally raised the issue when he asked are there two regressions
in a calibration problem ? The so-called "classical" regression
approach is to use the model in equation (1.1), estimate its

parameters via OLS and simply rearrange the terms to provide :

xo = —_——A (103)
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Krutchkoff (1967) argued that since interest focuses on the
determination of X and not of Y then one could perform the
regression of X on Y directly. Thus the estimate obtained from

this "inverse" regression is given by equation (1.4) :
% A%
X, = 8y + 81v, (1.4)

where ﬂ; and ﬂt are used to denote the regression estimates for
the regression of X on Y.

The dilemma over the utility of equations (1.3) and (1.4)
arises from a lack of agreement on the most suitable criterion
for assessing alternative approaches. An obvious criticism of the
inverse regression approach is that if Y is random and X fixed

then the model :
* %
X=f,+ fY+( {1.5)

vhere ( is a random error, makes no sense. However, if the
calibration experiment is strictly data analytic and not
inferential then one is not so much concerned with identifying a
meaningful statistical model , and criticisms of the type just
alluded to may be of no concern. Whilst it is not the intent of
this paper to give a comprehensive review of the relative merits
of the many approaches to statistical calibration, the interested
reader may consult Fox (1989) in which these issues

are discussed more fully.
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2. The multjivariate extension.

In this section we outline some of the theoretical
development for the mnultivariate extension of the linear
statistical calibration model. Our treatment of the multivariate
case utilizes results previously given by Brown (1982).

Before proceeding with the theory, we first give an example

to illustrate the type of problem encountered.

2.1 An example of multivariate calibration.

Oman and Wax (1984) discuss the problem of accurately
determining the gestational age of an unborn child. Standard
practice is to compare the rate of fetal development with
published charts and tables. Such quantities as bone lengths
(femur length, F and biparietal diameter, BPD) are usually used.
However, the comparison of each measurement separately with its
respective 'standard' value ignores the inter-dependencies among
all three factors (age,F,and BPD). The authors demonstrated that
a model which took cognizance of all three variables
simultaneously resulted in an index of gestational age which was
significantly more accurate than either alone. Observe, that in
this example both F and BPD are dependent, although our future
interest centers on determining age from measurements on F and

BPD.

2.2 The theory of multivariate calibration.

We have as our assumed model :

Y=1"a +Xf+ ¢ (2.2.1)
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where Y is (nxp) ; 1 is (n x 1) vector of ones ;
e is (px1) ; X is (nxq) ;

p is (gaxp); € is (nxp) .

Furthermore, assume § ~ Nq(O,ED. Without loss of generality
, we will first center both the X and Y data by subtracting their
respective means. Now using standard results,the OLS estimator of

f is given as :

p= x'0°xTY (2.2.2)

It can be shown that the m.l.e. for a calibrated Xy

{corresponding to some future observation yo) is :

=S B E% v (2.2.3)
~ 1 ATA -~ ~

vwhere %= > F ; E=Y-Y

and v = n-q-1 .

It can also be established that io is unbiased.

2.3 Conditional calibration.

The idea now is that when calibrating for X, it may be that
some of the components of X, are fixed in advance and we thus
wish to modify the procedure so that not only will io have the

required fixed or known values, but also that the remaining
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(free) components of io be such that io as a vhole has the
correct covariance structure. Before addressing this problem we
first present some standard results for the conditiemal

multivariate mormal distribdution.

2.3.1 The comditional mormal p.d.f.

Let X and Y be two random vectors such that [ : ] - N(s 0

3] (] o cef3]- [ 5T

Let ¥ be the random vector Y|X=x where x is a vecter of
deterninistic scalars.

It can be shown that :

EY] = claCritx - p ) + g, (2.3.1.1)
and

-1
Cov['] = Caq - C|T2C11C|z (2.3.1.2)

We now utilize these results to calidbrate conditiomally in

the case where the data is multivariate mormal.

Let i; be partitioned as :

s
ar 3
Xo-[r]
where § has v, components and f has v, comporents and

I/l+V2’(.
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€11 Cia ]

AT
Al = T
] and Cov[Xal [ ¢ls Cag

. Hy
Furthermore, let F[Xo] = [ p
t

and let ¥ be the vector T|S=s.

Thus, using equations (2.3.1.1) and (2.3.1.2) we have that

] = claCrits - ) + p, (2.3.1.3)
and

-1
COV[?] = Cg9 ~ CIzC,]Clz (2.3.1.4)

We are now in a position to identify the steps involved in

calibrating cenditionally.

2.4 The conditional calibration procedure.
Stepy 1:

Conduct the wsmcosdilionsl calibration to obtain f; using

equation(2.2.3), that is :
- A asl AT~ Ao
X = (8%, AV B % v (2.4.1)

(vhere fb denotes the estimated covariance matrix of the

y's).

. $
Partition Xo as : Xg = [‘r] .

Step 2:

For given $=s compute :

¥ CIzC]](! - §) + i (2.4.2)
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~

where 8§ and T are obtained from the unconditional

calibration.

Observe that our ability to calibrate conditionally is
dependent upon us having knowledge of Cov[X,] .In order that we
may develop an expression for Cov[iol it will be necessary for us

to digress momentarily to consider the regression of X on Y.

3. The regression of X on Y
As noted by Brown (1982) and others, when both X and Y are

multivariate normally distributed an alternative approach to the
use of equation (2.2.3) is to perform the regression of X on Y
and thus obtain the calibrated vector i: directly from the
estimated regression model. Furthermore, after suitably
transforming both i: and io, the resulting quantities are in fact
equivalent up to a constant of proportionality and that the
constants are the cannonical correlations between X and Y. We now
develop these ideas further.

In what follows we assume that X and Y have been centered
on their respective means.

In the regression of X on Y let :
X=Y8+( (3.1)

vhere the dimensions of ﬁ,Y, and ﬁ are respectively (n x q),

(n x p), and (p x q) and 3 is the usual least-squares estimate :
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B= (YTy)-lYTx (3.2)

. L%
Thus, given a new (1 x p) vector y,., we obtain Xo as :

- -1
5= vy, (3.3)

After some algebraic manipulation it can be shown that :

~ IS

Yepst BB R (3.4)

X0 = [(X'R)°
where ﬁ is obtained from the regression of Y on X i.e.

B= &'y (3.5)

and %, =YY - Fxxp (3.6)

Next, let W= x'mt 35!
sww = a0 pg A’ (3.7)

Using the Binomial Inverse Theorem [Press (1972),p.23] it
can also be shown that
N -1 -l
(x"x) TIRET = (r + W TR 323 (3.8)
-t
Let @ = [1, + ¥ W'l
:Q[anwfl =1

and @+ QW W) =1
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1 1 t f

hence MW W)~ + Q= (wwH™ 3 QrwwH ™+ I = '

"iwwh s 1] (3.9)

3 Q0=(ww)

Since (W ¥W') and Iq comute, equation (3.9) may be written as

0=uq+wwﬁ”uwff' (3.10)

Now from equation (3.8) we have

(x"x) IRET - [, + ¥ Vi v ]
1

(g + W71 w0 ' W) TR

txTx) ] (3.11)

.-
[Iq + (WW)
Next let U = (x'%) ¥x'y(x'v)"?

- zafgky ;g* (3.12)

Thus the positive eigenvalues of U are the cannonical
correlations between X and Y.
- -1
Now, %, =YY -YX(XX XY (3.13)
. Tor ~ 4 Ty~ %
Letting V = (Y Y) 2& (Y Y) we have

vi- anig ot (3.14)

Furthermore, it is relatively easy to show that
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vV=I-Uv (3.15)

-1
Next consider (I + W VT) W ¥ . In the most general case where X
is (n x q) and Y is (n x p), U will be a (q x p) matrix and V is
a {p x p) matrix.

Now

-1 -1 -1 -1
(IT+¥W) WW =(T+uv u) o u'
Again, using the Binomial Inverse theorem we have

1 1

-1 -1 - i -1 ey | -] = -
(T+UV U) =[I-UV (V +V uww ) v u]

and hence

@+ eyl s - w e v e T e T

suv e - o v e v e

o o e view YT e e v ieTw T
—ov o v o)y T eTe T

1 1

)—lv—luruv—lur

-1 -1 - -
s v 'oov et - vloTuv T
1

=o' o v iew ) T v
oo e viue T T
wlv s T T
wila+uwhH '

-1
sv+uw U

but by equation (3.15), Vv + U'U = I. Thus substituting into the

last expression we finally have that

-1 -1 -1 -1 -1
(T+¥WD WW =@+ uv) wu =vr v =uw

(3.16)
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Thus the eigenvalues of (I + W HT)_lH W' are the same as
those of UUT. However, as previously noted, the eigenvalues of U
are the cannonical correlations between X and Y and hence the
eigenvalues of UU' are the corresponding correlations squared.

From equation (3.8) we have :

xR TR = [T, + ¥ ¥ @ TRE

s I+ W W E TR - T TR (3.17)

-1
Let [Iq + (W HT) ] have the spectral decomposition QDQT
where the columns of Q are the normalized eigenvectors of
-t
[Iq + (W¥) "} and D= diag(Al,Az,...,Aq) be a diagonal matrix

of eigenvectors. Thus equation (3.16) can be written as :
T oToy ~hokT _ Toy = FaT
QDQ (X X) *Xo¢ = (X X) *X¢
-t 1A
s 0 xR 7HET = oT(x"x) i} (3.18)
If we let A = QT(XTX)—% we obtain :
DAXY =4AZX5 (3.19)
In otherwords, after applying the same transformation
(namely A) to both i: and io, we find they only differ by
constants (Al,Ag,...,Aq) which, as we have shown, are the squared

cannonical correlations between X and Y. We now utilize this fact

to derive the covariance information for Xgp.
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4. The covariance of Xg.

For a given Y, vector we can use the previous results to
obtain io = [§1,£2,...§q]. Observe that io is a random vector
having some mean vector F%o and covariance matrix 2&0. In
general, it will not be possible to estimate 2&0 using a sample
covariance matrix since there will only be one q-vector ﬁo. As an
alternative, we wuse the relationship between io and i:

established in the previous section.

Returning to the regression of X on Y :

x=v8"+ ("
thus
o = vo8
where
g = v 'vx
and
Covizy] = v, (V) 'y B, (4.1)

where 3, is the error-covariance matrix for the regression of X

on Y. Now from equation (3.19) we have :

DAXY =Ax;
- - -1
3 Xo=2X 0 where Q1= ADA .

and thus :

- ol o T
CoviXo] = 2&0 = Q gxo tH (4.2)
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Thus, by performing the regression of X on Y we can obtain
an estimate of Cov[io]. Knowledge of Cov[ﬁo] allows us to
calibrate conditionally using the procedure outlined in section

2.4.

It should be pointed out that we are not necessarily
advocating the use of equation (2.2.3) over the seemingly more
direct method of regressing X on Y (which as we have seen, needs
to be performed anyway if estimates of Cov[io] are to be
obtained). All we are attempting to do is to provide a reasonable
mechanism for calibrating conditionally given that one wishes to
use the maximum likelihood estimate given by equation (2.2.3). We
now illustrate the procedure using previously published data. A

comparison of the methods will also be provided.

5. An_example.

Brown (1982,p299) considered the multivariate calibration in
which 21 samples of hard wheat had their percentage water and
percentage protein compositions measured. In addition four
infrared reflectance measurements were taken for each sample.

The data are given in table I on the following page.

Preliminary data analysis
A cannonical correlation analysis of the data (n=15) gave

the following (standardized) cannonical variates :
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Table I : 21 samples of hard wheat, four infrared
reflectance measurements plus laboratory
determinations of percentage water and protein.

Observation Y Yo Y3 Y4 Xy X9
%water %protein
1 361 108 96 243 9.00 10.73
2 361 107 98 245 8.94 11.05
3 362 110 94 241 9.12 9.86
4 362 105 94 246 9.06 11.41
5 362 104 70 221 10.02 11.57
6 367 11375 221 10.06 9.42
7 366 108 82 233 9.52 10.93
8 360 104 86 236 9.32 11.61
9 362 113 85 229 9.56 8.82
10 360 103 90 242 9.10 11.81
11 351 97 88 238 9.14 12.33
12 353 95 73 227 9.70 12.93
13 352 97 77 228 9.60 12.69
14 355 96 52 206 10.62 13.13
15 357 106 69 216 10.04 10.41
16 351 93 69 222 10.00 13.57
17 363 113 88 231 9.46 9.26
18 363 110 101 248 8.86 9.82
19 366 96 85 235 9.34 12.85
20 350 96 85 235 9.34 12.85
21 355 97 63 216 10.12 12.81
Note :
(i) only the first 15 observations in table 5.1 will be used

for the purpose of model fitting. The remaining data will be
used for calibration.

(ii) all data is centered prior to analysis.
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Reflectivity : {, =

& =

Composition :

The cannonic

FOX

-0.3541Y,; + 0.5195Yy + 0.0397Y3 + 0.8691Y4

-0.6524Y, + 1,7849Yy - 1.2006Y3 + 0.6315Y,

2
[}

<2
1l

al correlations

-0.9320X; - 0.2513X%,

0.3914X; - 0.9791X,

are : rl=0.998057 and

r2=0.992321. The correlations squared (also the eigenvalues of

equation 3.16). are A;=0.996138 and A=0.984702.

For the regression of Y on X we obtain :

a'= (359.40, 104.40, 81.933, 231.467)

5 0.0027
B = | -3.3795
& - [154.323
Ey = | 68.159
30.857
| 71.739
V= | 6.0425
T L2
0 = [ -0.31877
| 0.94782
D= [ 0.9847
= | 0.0000
[ 1.005046

-0.3747 -11.4830 -11.2304

-5.4193 -2.6268 -0.0576

68.159 30.857 71.739

34.082 16.089 28.259

16.089 19.606 19.853

28.259 19.853 45.024
-2.2184 -9.1563 -10.6294
-8.5708 -1.4343 -0.8891
8 0.947829

9 0.318778

0.0000 A= -0.101054 0.252790
0.9961 0.240629 0.064895

Q- -0.004193
-0.002829 1.014407
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Regression of X on Y

g = [ 0-038935 0.157483 ]

-0.010858 -0.322290.
-0.027428 0.088771.
|-0.060185 -0.080345. |

& - | 0.068538 -0.0308827
%x = [-0.030882  0.203757]

Calibration of observation #16.
For this observation we have :
y, = [351, 93, 69, 222]

From the regression of X on Y we obtain :

iX = [0.72123, 1.96381] (NB: these are centered values)

The calibration data yield : X; = 9.520 and X3 = 11.247.

~

Adding these to the respective components of iX we obtain iE =

{10.241, 13.211]. Applying equation (3.19) gives

~

Xo = [0.73991, 1.198538] from which we obtain

~

Xo = [10.260, 13.232} (NB: these are the unconditional

estimates).

- _ [0.0308109 ~0.0138828
Now, %= |-0.0138828 0.0915984

from which we compute :

- _ [ 0.0312553 -0.0138411
%y~ [-0.0138411 0.0937138
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Table II : Calibration of %Protein[%water.

Observation. Unconditional | Conditional Unconditional | Actual

equation 2.2.3| equation 2.4.2 | equation 3.3

16 13.2320 13.3498 13.2105 13.57
17 9.6031 9.5842 9.6180 9.26
18 10.3569 9.9951 10.3730 9.82
19 9.5205 9.7108 9.5316 9.46
20 12.4693 12.2924 12.4620 12.85
21 12.5197 12.8733 12.5007 12.81

Table III : Comparison of various calibration methods
for the calibrated values of Table II.

Average error

mean square error

equation 2.2.3 -0.0114 0.1255
equation 2.4.2 0.0059 0.0937
equation 3.3 -0.0124 0.1358

Finally, given that % water for this observation is 10.00 we
obtain the conditionally calibrated value of % protein as
13.3498. This represents a 40% reduction in error when compared
with the actual value of 13.57 and the value of 13.2105 obtained
from the regression of X on Y.

The procedure has been applied to all six observations rnol
used as part of the model fitting exercise. These results are
summarized in tables II and III.

Overall, the conditional calibration of %protein using the
procedure outlined in this paper has resulted in an approximate
30% reduction of mean square error vwhen compared with the

unconditional results.
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6. Conclusion.

In this paper we have developed a procedure for calibrating
conditionally in the multivariate normal case. As a by-product of
this approach an expression for the variance of a calibrated
vector io has been derived which hitherto has been unavailable.
This variance is necessary if one is to make any type of
inference about the components of io. Finally, the procedure has
been applied to sample data and shown to substantially improve
the quality of calibration when at least some of the components
of io are known in advance. Intuitively, the magnitude of this
improvement will depend largely on the covariance structure of
the X,Y sample data. Preliminary investigations into this aspect

of the method have confirmed this belief.
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