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ABSTRACT:

In this paper we examine a particular calibration problem of the form

Y = f(X) where measurements on Y contain two sources of variability,
namely instrument error in the determination of Y and uncertainty

in X. Given certain distributional assumptions, together with simplifying
approximations, maximum likelihood estimates for the two error variance
components may be obtained.

Furthermore, it is shown how the iterative parameter estimation procedure
can be readily adapted for use with the MINITAB statistical package

or alternatively, using the GLIM software. A practical application of

the procedure is given.

KEYWORDS :

Calibration, components of variance, generalized linear models.



INTRODUCTION

This analysis arose in the context of an experiment designed to test the
accuracy with which a vehicle's speed could be determined by an observer
in an overhead aircraf%.

The standard procedure is for the airborne observer to time the vehicle
below as it crosses two marked lines on the road. These lines are usually
separated by either 500m or 1000m.

It is then a simple matter to convert this recorded time into an average

speed for the measured distance.

The problem of assessing the accuracy of the procedure and/or of varying

the method of calculation falls under the umbrella of statistical
calibration. The broader (and as yet largely unresolved) issues surrounding
the so-called calibration prbb]em will be discussed in a separate paper. |
For the moment, we are concerned with obtaining cstimates for the error

variances associated with :

(i) the taking of time measurements,
and
(i) the ability of a driver to maintain constant speed.

Given two marked Tines separated by some distance d metres we can
compute a vehicle's speed using equation (1).
recorded
speed = §4%—g (1)
(km/hr)

where t is measured time
in seconds.

In the present context it is preferable to rearrange the terms in equation
(1) to express time as a function of speed since it is the former which is
actually measured. Therefore, in general terms we have as our model y = f(X)
where y s the time required to cover a prescribed distance when travelling

at some speed X.
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A simple check on the accuracy of the airborne procedure is provided by
taking time measurements on a vehicle whose speed can otherwise be
accurately determined and comparing the actual speed with that calculated
using equation (1). Ip setting up such an experiment the problem becomes
one of determining ‘to ;hat extent discrepencies between the calculated

speed using equation (1) and the assumed speed are attributable to the two

sources :
(i) error in time readings due to
(a) observer's reaction time
and
(b) observer's ability to accurately judge the crossing
of the two Tlines.
(i1) driver error (a driver told to travel at 80 km/hr say, will have

trouble in maintaining a speedometer reading of  exactly 80 km/hr).
Thus, whilst the true time (y) i< precisely determined by the actual speed
(X), in practice the the measured time Y is recorded and it is this
measurement which is subject to error. Furthermore, the actual or true
vehicle speed X is never known - the driver is simply jnstructed to
travel at some nominal speed x.

We therefore have that

Xi =Xy * Uy and Yi =yt V1
where X; is some nominal speed
Xi is the actual speed
Ui is a random error reflecting the drivers inability
to maintain constant speed X

Y5 is the actual time required when travelling at Xi
Yi is the measured time as made by the airborne observer.
V. is a random error associated with taking time

measurements.



Given certain assumptions concerning the distributions of Ui and Vi

together with the other simplifying approximations, we now derive a

procedure for estimating the components of variability cﬁ and os .

2. Estimating the components of variability

Given the previous definitions we have

’ = f
Yio= fOG) +

f(xi + Ui) + Vi

and using a first-order Taylor approximation

Yio= f(X,) + U F(x) +
In what follows we shall assume
u; - N(O, oﬁ) and v. - N0, 03)
and thus : E[Y1] = f(xi)
Var[Y,] = o2 + o2 ['(x,)]? (3)
Also Tet Y1 - f(xj) oy f'(xi) + Vi = ey
and so E[gi] = 0
Var [81] = 06 + 06 [f'(Xi)]z = 0%

We shall call o% the "effective variance" at point X An unbiassed

estimator of c% is provided by s? where

(E1 - E1)2

s = z n -1

and Ei is the difference in a measured time and a calculated time for

the assumed speed X; (there being n determinations at each Xi)'



Now ——1 follows a Chi-square distribution with k = n - 1

degrees of freedom, and thus s? has the p.d.f.

2
m S5
m -m >
g = m_l im e —_
$EP o mhm G o (4)
where m = % and s? > 0
m

2™ (m)

For convenience, let K = in equation (4).

We assume that at each X; i=1, ..., N , n vreplications are
available. This effectively determines the value of m and so the

p.d.f. g(+) 1is parameterized by 0% .

The 1ikelihood function is thus

N _ i s2,
L(o2552) = 1 {K(s®)" 1 (%z)m oM Ti/of
i=1 i
g 512 N 1,1 (5)
- N ‘m — 2 m- 1 m

and the Tog-Tlikelihood

N S% N N
mL=NInK-m) (=) -m J 1n o2 + (m-1) ] In (s2) (6)
i=1 7] i=1 i=1

Now, in the context of vehicle speed estimation we have f(x.) = £ where

c is a constant depending on the separation of the two marked lines.
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. c?
: 2 = g2 4 =_.2
Therefore, by equation (3) : o oF x?cu
2 2
and hence 9% 90 _ c?
— L and -
2 .
Bcv u X1

We see that equation (6) is a function of oﬁ and 03 . By taking

partial derivatives of equation (6) with respect to both cﬁ and o2

~ ~

and setting these to zero, we obtain the m.l.e.'s -oﬁ and »05

3lnL 3lnlL ao§

Now, 2 5352 32
8ov 801 Bov
N s2 N
- 1 1
=l o -ml X1 (7)
i=1 0'_] i=1 © j
and
2
aln L _ il 30% . g i i N . (8)
3g? 302 302 (21 Xko! " 55 xYo? '
U j U Ci=1 7374 i=1 X303

Setting equations (7) and (8) to zero and letting W, = é% we obtain
i

N N
2¢2 =
1le]s1 izlwi (9a)
and
N w%s% N Wi
'Zl X.F '21 X. ¥ (9b)
i= i i=1 "§
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Equations (9a) and (9b) are the maximum likelihood equations which will
need to be solved iteratively. We first solve directly using Newton's
Method for simultaneous non-linear equations and then demonstrate how the
problem can be cast in&the context of a Generalized Linear Model and thus
amenable to solution uging the GLIM software (the two approaches are

mathematically equivalent).

3. Iteratively re-weighted least squares method for m.l.e's

N
Let fx = ] (w8 s? - w.)

i=1
N w?s% W,
and g* = ] (= - =)
i=1 ] !
where w, = 1
i 02 + g2 £z
v u X§

aid suppose 802 and 802 are the increments in 03 and oﬁ

respectively required to reach the true solution, then :

Carx 5f* ] [e02 ] -f
303 Bcﬁ
ag* ag* Goﬁ -g
302 90
LTV u | L i i 1
Now , N
*
Eiz_= 1wz - 2szwi)
aov i=1
af* N c?
— = Yo ;—;[w% - 252 wi]}
3o i=1 : '
u i
N
*
9. ]t - 2siwgl)
3o i=1 ;
v 1
39* = g .9_2 [w2 - 252 w3] }
Py 21 X18 i i




u

|
3.1 Choosing initial estimates for _83 and o2 }
|

Convergence of the method described in the previous section may

very much depend on the choice of initial estimates-o%o and '050 .

An example of the log-likelihood function is depicted below :

Likelihood Function

18.83

18.26

The above plot reveals the difficulties Tikely to be encountered with
convergence if the initial estimates are far removed from the global
maximum.

N
*
We have already that f (o2302) = oW

1
2 b
53

This equation is obviously true for the choice w, = although in

practice this will not hold for all i since

e

= 0% (by definition)

and we do not expect cf = s$ due to the sampling variation in s .
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Nevertheless, since s% is our sample estimate of 0%' » the choice
1

Wi =57 is a sensible one and at least affords a starting point in the
i n A

search for those '05 and -03 which satisfy (9a) and (9b).

It is suggested that initial estimates 830 and -;50 be obtained by

taking two arbitary xi's (of reasonable separation) and solve the

resulting pair of linear equatijons.

eqg. X; 4l 85 135
2 I 0.0441  0.001631
Thus :
2 2 =
62+ 0.062102 0.0441
and
820 + 0.0098850 = 0.001631
- 2 - . 2 -
> o2 0.0066 and 02 0.8167
.A2 =
(assume eo 0)

The iterative procedure has been imp]emented on computer using the macro
facility of the MINITAB package. A Tisting of the MINITAB routine may be

found in Appendix A. An example of the procedure is now given.
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4, MINITAB implementation

We now demonstrate how the iterative procedure for obtaining the
mie's may be implemented in MINITAB. In the following example we

have generated a set of 'measured' times according to the model

outlined in §1. Thirteen assumed speeds were used ranging from
80 km/hr to 140 km/hr. At each of these speeds 30 replicates were

obtained using errors generated from the following distributions :

U ~ N(0, 3.82) and V ~ N(0, 0.752)

Analysis of the restuling data provided the following sample

standard deviations at each speed:

assumed

speed X5 80 85 90 95 100 105 110 115

standard

deviation S, 1.133 1.237 0.995 1.008 0.960 0.969 0.938 0.981

120 125 130 135 140

0.774 0.707 0.700 0.839 0.713

Sample output corresponding to the MINITAB analysis of the above data

is shown on the next page.




KB > # Sisulation of components of variance estintiuﬂv‘;"
MTB ) # 30 observations at each speed using following parameters ;

LIER ]
NTE > # signa-squared U = 14.44
NTB ) ¥
L)V 4 sigea-squared V = 3623

MTB ) let ¥1=3.8
KT8 > let £2=.73
NTB ¥ exec 'simul’

ROWS: C1

c6
ST0 DEV

80 1.1
8§ 1237
9% 0.9%
95 1.008
00 0.360
105 0,969
{10 0,938
115 0,98
120 0774
125 0.707
130 0.700
135 0.839
40 0,713
AL 3.106

NT8 ) set cl & put assumed speeds into Cl

DATAY 80:140/9

DATA> set ¢3 t put std. deviations info C3

DATAY 1.133,1.237,.995,1.008,.96,.969,.938, .981,.774,.707,.7,.833,.713
DATA) print el 3

ROW o c3

G g O N B N e
—
°
o
o
<

13 140 0713

NTB ) raise ¢3 2 c3 & convert entries in C3 to variances
HTB ) let ki=.1 $ set initial estisate for sigma-squared V
NTB > let k2=.1 $ set initial estimate for sigma-squared U
NTB > exec 'macl’ § § perfore 5 iterations of mle routine

SUN = 929.73

it ] = 0.000010335

Su% = -19183

SUM = ~674.87

SUM = -0.00020829

SUK =~0.000010277

NATRIX M4
0.0453770
0.0878439
Stm = 403,88
sun =0.0000045172
SuR = -3883.2
SuM = -203.70
5ud =-0. 000063486
SUR =-3.115246-06
HATRIX M4
0.062446
0.177431
SuM = 173.15 :
Sus =0,0000019502 "
SUN = -1840.7
SUN = -63.711

sun =-0. 000013664
St =-9,36465€-07

BATRIX W4

0.081463

0.364177
SUN = 72,607
SUN =8.276333E-07
SUN = -593.63
SuM = -20.270

st =-f.23628E-08
s =-2.99900£-07

HATRIX M4

0.096459

0.747441
SUN = 29.268
SU8 =3.410009E-07
SUM = -204.63
Su = -6.7397

sun =-2,08632E~06
SUK ==9,75033E-08
BATRIX ¥4

0.09377
1.490%

KTB ) note . . . Convergence reached after another 10 iterations

NTB ) print ki k2 § print final estimates
Kl *0.433761
K2 14,1403
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After 15 iterations we obtain the following. parameter estimates :

2 =
2 14,403
and -33 =¥ 0.453761

These are in good agreement with the actual values of 14.44 and 0.5625.

4.1 Application to air surveillance method

—
Q
H]

—
Q
]

3.76)

0.67)

The air surveillance method of checking vehicle speeds has already been

outlined in §1. We now apply the components of variance estimation

procedure to actual test data collected in a controlled experiment.

Details of the experimental set-up may be found in Fox (1985). The

assumed speeds and sample variances are given below :

Assumed speed Sample variance

2

X; s?
85 0.0441126
90 0.0483296
95 0.0216649
100 0.0162971
105 0.0057608
110 0.0063680
115 0.0183088
120 0.0007868
125 0.0080210
130 0.0028164
135 0.0016314
140 0.0027468




let ki=0
MTB > let k2=.2
MTB > NOTE . . . Column
MTB > NOTE . , . _Column
MTB > print cl c3
ROW speed variance
1 85 0.0441126
2 90 0.0483296
3 95 0.0216649
4 100 0.0162971
S 105 0.0057608
6 110 0.0063680
7 118 0.0183088
8 120 0.0007868
9 125 0.0080210
10 130 0.0028164
11 135 0.0016314
12 140 0.0027468

MTB > noecho
MTB > exec ‘'macl' 10

SUM
MATRIX M4

~0.000000000
-0.000000020

MTB > NOTE . .
MTB > print k1l k2

KL -~ . =~0.00367924
X2 0.672324
MTB > NOTE . .
MTB >

and

We thus regard

After 10 iterations

this result is that
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Part of the MINITAB output using the above data follows.

# initial estimate for sigma-squared v
# initial estimate for sigma-squared U
C1 1s column of speeds

C3 1s column of sample varlances

# surpresses dlsplay of intermedlate calculations
# executz MLE routine 10 times

SUM = .
SUM = 0.000024886
SUM = ~3002834
SUM = -48399
sUM = -0.014938
SUM = -0.00034145
MATRIX M4
-0.0004310
0.0917384
°
.
.
BUM = -0.00018311
SUM =-6.57252E-13
‘BUM = -594519
SUM = -6038.3
SUM = ~0.0018637

-0.000023096

. Convergence reached after 10 iterations

4 display MLE's

. Regard negative varlance as essentlally zero

we obtain the following estimates :

a = 0.672324
3 = ~0.00367924
3 as being essentially zero. The implication of

virtually all error associated with the air

surveillance procedure has arisen from variation in vehicle speed

rather than an inability to make accurate timing measurements.
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This observation supports the previously reported conclusion [FOX (1985)]
that the airborne method of vehicle speed determination is both accurate

and precise.

5. Re-formu]atian as a Generalized Linear Model

We now take an alternative, although mathematically equivalent approach
to the problem by casting it in the framework of a generalized 1ihear

model and obtaining parameter estimates via the GLIM software.

5.1 Error distribution and link function
. . a c?
We start with the model : ei = 03 + 05 T

1

and data Y., i =1, ..., N. (ei was previously identified as c%

and the Y. as s? ).

Following from §2, the error distribution for the Yi is of the form :

) _ m-1,1m “™W;i/%

in(yi’ei) = Kyi (6;) e (11)
where K and m are as previously defined.

The log-likelihood function is also as before :

n y. (12)

1 1

=

N N
Tn L(ei;yi) = NInK-7J my; 04 - Tzl Tne, + (m-1)

i=1 i

Now, equation (10) is of the form ; = 8o * B) x% where B( = 03 >

2
= 42 [
Bl OU and Xi ;;ﬁ

Writing fY(-) in the exponential form

fy(y;e) = expla(y)b(e) + c(e) + d(y)}

we obtain a(y) = my ; b(e) =

(2}
—~
<D
S
n
>
—
=}
D

»
a
—~
<
S
Tl




and hence using standard results

E[a(y)] = E[mY] = mE[Y] = /e, = me

=> E[Y] = o

and  Var [mY] = m2 Var [Y]
2 y,/m m 1
- [(53)(5) - 92 55']
(55)
= me?
2
=> Var [Y] = %
Now, since u, = E[Yi] =6, and 0, = n, where n, fis the Tinear

predictor, we see that we have a GLM with error distribution specified

by equation (11) and identity 1ink function.

5.2 Deviance

The (scaled) deviance D, is defined as 2[1n 1f - In 1C] where ]f

and ]c are respectively the likelihoods under the full and current models.
Let -;1 be the parameter estimate under a full model and -61 be the
parameter estimate obtained from the current model.

It is easily shown that

We are now in a position to set-up the required macros in preparation

for implementation using the GLIM software.



5.3 . GLIM implementation
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In GLIM, four macros must be specified which assign values to the

system vectors %FV,* %DR,
Thus, using the results of
BFV =
%R =
WA =
%I =

»VA and %DI.
§5.1 and §5.2 we have :

%LP

1 (Since 1ink is identity function)
(ZLP**2) /%M (%M=m)

2% %Mf((%YV/%FV - 1) + (%LOG(%FV/%YV)))




5.4 Example

Output from the GLIM analysis of the ‘synthetic' data of §4 is given below.

7 S$UNITS 13
740

7 §C SINULATION OF COHPONENTS OF VARIANCE ESTIMATION
7 §C 30 OBSERVATIONS AT EACH SPEED USING FOLLOWING PARAMETERS :

74C

7 4C

74C

7 4C
J74C

7 $DATA X ¥

? $READ

780 1,133
785 1,237
790 .995

? 95 1.008

? 100 .96

2 105 .969

7 110 .938

? 115 981
2120 774

? 125,707
7130 .7

? 135 .839

? 140 .713

7 $CALC Y=Y$42¢
7 $ERI

7 $LO0K X Y$

t  80.00
2 85,00
3 90.00
4 95.00
5 100.0
6  105.0
7 1100
g 1150
9 120,00
10 123.0
ti 130.0
12 1359
13 140.0

2 YU Y

f

SIGHA-SRUARED U = 14.44

SIEMA-SOUARED V = 0.5625

1,284

1,530
0.9900

1.016
0.9216
0.9330
0.8798
0.9624
0.9991
0.4998
0,4900
0.7039
0.5084

27 $CALC X1=1800332/X1%4
? $CALC 1H=(30-1)/2

7 $HAC M1

7 $CALC ZFV=1LP
? $ENDMAC

7 $NAC M2

? $CALC ZDR={

7 $ENDMAC -

? $HAC M3

? $CALC AVA=(ILPX12)/IN

7 $ENDMAC
7 SHAC M4

? $CALC IDI=28TMBCCLYV/LFV-1)+(ALOGCIFV/TYV)))

7 $ENDMAC
7 $CALC ILP=YYV

7 $ONN N1 M2 H3 H4é

? $FITS
CYCLE DEVIANCE
3 22.89

? $FIT X1

CYCLE  DEVIANCE

3 5471

? 40 HES
Y-VARIATE Y

e

ERROR ORN LINK OHN

LINEAR PREDICTOR
6K XL

ESTIMATE
[ 0.4543
2 1412

S.E. PARAMETER
0.6675E-01 26
2.676 i

SCALE PARAMETER TAKEN AS  0.4974
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The parameter estimates are as previously obtained

03 = 14.12
and 83 = 0.4543

Applying the procedure now to the experimental data of §4.1 we obtain

the following resuT%s.

fox ) 6LIN
BLIN 3.12 (C)1977 ROYAL STATISTICAL SOCIETY, LONDON

? $C COMPONENTS OF VARIANCE ESTIMATION FOR ACTUAL TEST DATA
? $UNITS 12

2 $0ATA X Y

? $READ

7 85 .0441126

7 90 .0483296

7 95 .0216649

7 100 0162971

? 105 0057608
"2 110 .006368

? 115 .0183088

? 120 .0007868

? 125 .008021

? 130 .0028164

? 135 .0016314

7 140 0027468

7 $YvAR Y

7 $HAC M1

? $CALC ZFV=ILP

? $ENDMAC -

7 $HAC N2

7 $CALC %DR=1

7 $ENDMAC

? $HAC H3

? $CALC IVA=(ILP332) /1M
7 $ENDMAC

? $MAC M4

7 $CALC XDI=2KINE CCXYV/UFV-1)+(ZLOGCXFV/IYV)))
7 SENDNAC

? $CALC X1=1B00%%2/X%%4
7 SONN M1 M2 N3 N4

7 $CALC ZLP=YYV

? SCALC IM=(3-1)/2

2 40 ESESERRSTTAERSES FIT NULL HODEL SASREEXRRSSRtIRrsyifrsiisisrresssstiy

7 33CALE 1M
7 $CALC ILP=1YV
7 $FITS
----- CURRENT DISPLAY INHIBITED
SCALED
CYCLE DEVIANCE DF
1 1an {1

7 40 IRFSRLEREREsERt ADD COVARIATE 7O MODEL 3RRrsydiifttifisiriiiifriis
7 $CALC ILP=XYV

? $FIT Xi$
----- CURRENT DISPLAY INHIBITED
SCALED

CYCLE DEVIANCE oF
3 5.164 10

740 ME

Y-VARIATE Y

ERROR OWN LIKK OWK

L

N2

M3

L]

LINEAR PREDICTOR
168 X1

ESTIMATE S.E. PARAMETER
1 -0.3518E-02 0.3306E-02 %GM
2 0.6614 0.2930 4
SCALE PARAMETER TAKEN AS 1,000

24DV
(COIVARIANCE NATRIX
1 1.0930E-05 )
2 -8.9494E-04 8.5861€-02

1 2
SCALE PARAMETER TAKEN AS 1,000
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After 3 fjterations of the GLIM macro we obtain ’

o
S 0.6614
and 83 = -0.003518
We note that ~;$ is one standard deviation from zero and as such 53 =0
is plausable.
6. Conclusions

We have demonstrated that given certain assumptions about the nature of

the ‘error distributions involved together with the use of some

simplifying approximations, the two components of variation associated
with the estimation of vehicle speeds from airborne observation are indeed
estimable.

Analysis of previously obfained data suggests that by far the greater
source of variabi]ity is the inability of the driver to maintain constant
speed. The contribution to the total "effective" variance due to timing
inaccuracies has been shown to be negligable.

These results, together with previous findings, give support to the
contention that the airborne procedure of speed determination is both

accurate and precise.
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Appendix A : MINITAB 1jsting for parameter estimation macro

ty macl.mth

let ¢2=17(k1+((1800/ci332)3%2)1k2)
let cd=c3%c2%¥2-c2

sus ¢4 k4

let ¢3=(c2/c1$14)%(c2%c3-1)
sum ¢ k3

lot c10=¢2%8¥2X(1-2%c3%c2)
sua cl0 kb

let c7=((1800/c1£52)%%2)%c10
sus ¢7 k7

let cB=c10/cixid

sus ¢B kB

let ¢9=({1800/c1¥%4)§32)%c10
sus ¢9 k9

set c98

k6 k8

set ¢99

k7 k9

copy ¢98 ¢99 =l

let kd=-k4

let k3=-k3

set 100

kd &3

copy c100 82

invert al al

sult 3 a2 ad

prinf nd

copy »d ci2

let ki0=ci2(1)

Tet kif=c12(2)

let ki=ki+kig

let k2=k2+klil

end

A.l
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