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4bstract : In this paper we examine the problem of statistical calibration in a
non-stationary field. A linear statistical model of the form V = W@ + ¢ is
assumed to exist at each of a number of locations. Furthermore, the vector of
parameters, # at a particular location X is assumed to be parameterized as

B = AX , where A is a matrix of deterministic scalars. Given V,W data we could
estimate @ at each location via OLS. The resulting collection of B's could then
be used to similarly estimate A . An alternative to this 'two-stage regression’
approach is to determine that A which minimizes an appropriate criterion such as

(V-V) " (V-V). The details of this latter method are given and it is shown to be
equivalent to the two-stage regression approach in the case of a single
location. The method is then extended to cater for the case of multiple sampling
locations. In this case the covariance structure bhetween locations is taken into
consideration using Seemingly Unrelated Regression (SUR) procedures. The
computations are illustrated with the use of an example and the programming
language GAUSS.

feywords calibration,multivariate regression,simple regression,inverse
regression, varying parameters model, seemingly unrelated regression.

1. Introduction

The results discussed herein represent a continuation (and a generalization) of
work recently reported in a paper entitled "Calibration in a correlated field".
We again consider the case of determining the matrix A in the system 8 = AX ;

V = W8 + £, where V is an (nxl) vector of dependent variable values, W is a
(nxp) matrix of independent variable values, B is a (pxl) parameter vector for

location X (wx1).
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The extension to more than one location has been considered elsewhere and
procedures were developed for the least-squares estimation of the matrix A.
However, these previous methods implicitly assumed that observations between
locations were independent. In many applications this will not be the case -
particularly in a geostatistical context where some or all of the locations are
within a zone of influence of each other. We now extend earlier results to allow

for this between-location covariance effect.

2. Seemingly unrelated regression and generalized least-squares.

For the ith. location :

vi = Hi ﬁi + £i (2.1)
{nx1) (nxp) (px1l) (nx1)
where
ﬁ& = A Xi (2.2)

{px1) (pxv) (vx1)

A convenient way to write this system of equations is :

vy Wi B &
Vol | We Bl 4+ | & (2.3)
i W | | A i
or
v=2zT+ ¢ (2.4)
where V is (knxl) , Z is (knxkp) , and T is (kpxl).
Furthermore, we assume E[fi] =0 and the covariance matrix of the joint

disturbance vector is given by
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Elé€’1 =% ® I = ¥, where (2.5)

0’11 0'12 - . .O'lk
Y = Oyy Tg9 « « «Ogy (2.6)

-
- - . .

Tky Tka - - - Tkk

. is the covariance between V in location i and V in location j.

where ai;

If we regard the n observations in Vi as representing a different point in time,
then the covariance assumption in equation (2.5) implies that the disturbances
in different equations are correlated at a given point in time but are not
correlated over time. In econometric theory this is known as a contemporaneous

correlation.
2.1 Estimation.

When the system represented by equation (2.3) is viewed as the single equation
(2.4), we can estimate T and hence all the ﬁﬁ via generalized least squares
(GLS). If Z is of rank kp and Y} is known and of rank k, the GLS estimator exists

and is given by :
- T -1 .-t 7 ,-1
T=(2Z4% 2) 2¢ V (2.1.1)

Within the class of all estimators that are unbiased and linear functions of V,
this estimator is minimum variance and, if V is normally distributed, it is the
maximum likelihood estimator and is minimum variance within the c¢lass of all

unbiased estimators (Judge et.al.1980,p246).
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Furthermore :

and

pd-n@d-n =@ ¢'nT =2 ez

If interest centers only the ith equation and only estimators of Vi are to be
considered, the the OLS estimator ﬁi = (W;Wi)—lWiTVi is the minimum variance
linear unbiased estimator. However we can improve on this estimator by
considering a wider class, namely linear unbiased estimators that are a function
of V. Within this class E&, the ith vector component of T , is better than ﬁi
because it wuses information on explanatory variables that are included in the
system but are excluded from the ith equation. The possible gain in efficiency
obtained by jointly considering all the equations led Zellner (1962) to give

equation {2.4) the title "a set of seemingly unrelated regression equations."”

Zellner indicates that if oy = 0 for all i #j or if Wy = Wy = ... W, the

~ A

estimators bi and ﬁﬁ will be identical, and so there will be no gain in
efficiency. Also, the efficiency gain tends to be higher when the explanatory
variables in different equations are not highly correlated but the disturbance
terms corresponding to different equations are highly correlated.

In most applications ¥ is uknown, and so the estimator T cannot be employed.

However, one can utilize the estimated generalized 1least squares (EGLS)

estimator :

T-12"3 ' enz 27 eV (2.1.2)

~ -~

where the estimator i is based on the OLS residuals fi = VvV, - wibi and has

elements given by
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= ' i.j=1,2,. . .k (2.1.3)

2.2 Least squares estimation of matrix A.

2.2.1 Single location case

We now examine the problem of least squares estimation of matrix A appearing in

equation (2.2). Consider a single location i, and thus

p; = BX;
where A is a (pxy) matrix of unknown constants and Xi is a (vx1) position
vector. Our objective is to find that A which minimizes
0= (v.-v.) "y (v.-V.).
i'i i'i
(in this case ¥ represents the covariance between observations within a single

location).

Now,

©©
1]

T ~1
(Vi—wiAxi) /] (Vi—wihxi)

Ty Tee T,

1
(ATWYWAR, (2.2.1)

T ,~1 -1
Vi ¥ Vi - 2Vi¢ WiAXi + X

Differentiating equation (2.2.1) with respect to the matrix A and setting the

result equal to zero we have :

a0 _ d T-l Tt T T, =1 a
v 0 3 vy Vi ¥ Vi 2Vi¢ wiAxi + XiA Wi¢ WiAXi =0

3 —2%- [viquf'wiAxi] + gﬂ [xiTATwiqb"wiAxi] -0
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Now,
d T -1 CaTa ey o
& i ? “i“i] =¥ VX

and

'gi [xiTATwiq{z' l WiAXi]

d T -1
. [(WiAXi) ¢ (WiAXi)]

-1
2X, ® W.¢ W.AX,

1 1 1 1
and therefore

T -1 T T T ,~1
=03 -2Hi¢ ViXi +2Xi @ Wiﬂ'l WiAXi =0

S

T T~ T~ T
3 X @W 4 WAX, =W VX
Taking transposes :
T.T..T T -1
2 X ® X AW, ¢ W XiVi¢ Wi
Multiplying both sides by X
T.T,.,T
2 X X ® X AW, ¢ W X1X1V1¢ W
T.T,.. T ,—1 T ,—-1 ) T .
» XA (Wiw Wi) = Vi¢ L (since XX, is scalar)

Now Wi is full rank and hence :

T, T T -1 -1 7 -1
XiA = (Wj_{(l Wi) Vidl Wi
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Finally, taking transposes we obtain:
ax. = g o Wiy
i = (W W) WV,
T -1 -t 7 =1
3 Ti = (W,¢ W) WV, (2.1.2)

Notice that , in the case of a single location,the least squares solution given
by equation (2.1.2) is the same as the GLS estimator in equation (2.1.1) (2 in

the case of a single location reduces to Wi).
2.2.2 Multiple locations.

For the case where we have more than one location we may express the quantity ¢

as follows :

0= [V -2 vech(AX)]T ¢ ' [V - Z vech(AX)] (2.2.1)

where V and Z are respectively (knxl) and (knxkp) matrices. A is (pxr) and X is

(vxk). Previously in the case of multiple locations we were able to express Q as

k
Qi where Qi was the contribution from the ith location and thus g% =0
=1

1

k

3 z g%i = 0 . However, this is no longer possible due to the presence of ¢ in
1=1 ’

equation (2.2.1) and we are forced to consider (2.2.1) as a whole. The existence

of a closed form solution to equation (2.2.1) has not been established at this
time. As a practical alternative we can solve equation (2.2.1) numerically using

a Newton-Raphson technique.
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The estimate of A at the (m+1)th step is given as :

AL = atm _ [V20(a)17'V 0(a) (2.2.2)

where V2Q(A) is the Hessian of Q evaluated at the current vech(A) and V Q(A) is

the gradient function of Q evaluated at vech(A).

The iterative procedure described by equation (2.2.2) has been programmed using
the matrix-based language GAUSS. A copy of the source code is given in the
Appendix. It should be pointed out that the process for determining the least
squares solution for A using the EGLS approach is very computationally intensive
since the covariance matrix @ is updated at the end of the Newton-Raphson
iterations and the cycle repeated using this revised @ . The process terminates
when the norm of the difference between two successive approximations to A

differ by less than some prescribed ammount.

2.3 Two stage regression approach.
With k locations and n observations per location in a v-dimensional field we can
derive an estimate for A which parallels the so-called two-stage regression

procedure previously developed. This estimate is given in closed form as :

Y-z enzi 2"y env xT(xx") ! (2.3.1)

provided v < k.

We now illustrate the computations associated with both approaches with the use

of an example.
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3. Example

The data used for the purpose of illustration of the techniques discussed in
this paper were generated according to the following scheme.
At selected 1locations in a two-dimensional field compute values of the

independent variables W; and W9 as follows :

2 L2
Jexpi-$[F + 321}

Wi

and

[

wo = 2exp{-[x, + x,1/10}

The parameter values are computed as :

Bo(X) = -2 + 3x, + 4x,
B (X) = 5 - x +2x
By(X) = 2+ x, - 3x,

and thus

In the following table we have used 5 locations with 6 observations at each
location. The values of W; and W9 at a given location were randomly generated
about the mean value given by the expressions above. Two sets of V data are also
given. The first set (V) are those values of V that satisfy V = W8 exactly at
each location while the second set (V3) were obtained by adding to the V; values

a normally distributed (0,1) random error.
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Xy X9 Wy Wo Vi Vo
1.0 1.0 2.439 1.701 19.6340 20.5147
1.0 1.0 2.419 1.733 19.5140 19.3308
1.0 1.0 2.343 1.595 19.0580 18.5321
1.0 1.0 2.409 1.667 19.4540 18.9472
1.0 1.0 2.2917 1.638 18.7820 19.3467
1.0 1.0 2.456 1.807 19.7360 19.0564
1.5 -0.7 2.140 1.904 14.8564 16.4618
1.5 -0.7 2.156 1.884 14.7780 14.4764
1.5 -0.7 2.202 1.833 14.5890 13.9134
1.5 -0.7 2.195 1.717 13.9247 14.3847
1.5 -0.17 2.145 1.705 13.7525 13.8574
1.5 -0.7 2.194 1.867 14.7626 16.0857

-2.3 1.8 1.779 2.024 6.1543 4.9149
-2.3 1.8 1.061 2.096 -2.0169 -2.5244
-2.3 1.8 1.092 2.105 -1.7957 -1.9037
-2.3 1.8 1.103 2.129 -1.8126 -2.84317
-2.3 1.8 1.138 2.050 -0.9808 -1.5414
-2.3 1.8 1.136 2.056 -1.0368 0.0647
-1.4 -1.2 2.042 2.713 8.5626 8.8700
-1.4 -1.2 2.005 2.651 8.1542 7.7663
-1.4 -1.2 2.003 2.514 7.5708 9.1219
-1.4 -1.2 2.080 2.628 8.3576 8.0765
-1.4 -1.2 2.014 2.654 8.2028 9.9138
-1.4 -1.2 2.052 2.609 8.1658 6.6364
0.9 2.1 1.768 1.488 18.7152 17.4071
0.9 2.1 1.775 1.479 18.8039 18.3699
0.9 2.1 1.743 1.463 18.5927 17.4336
0.9 2.1 1.790 1.478 18.9318 20.7829
0.9 2.1 1.781 1.478 18.8571 17.6514
0.9 2.1 1.751 1.588 18.2341 19.8053
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3.1 Analysis of V; data.

Using the V; data in the table as dependent we estimate the A matrix using the

two approaches as :

2-stage regression (equation 2.3.1)

which is in perfect agreement with the actual A matrix used to generate the V;
data.

Least squares with respect to A.

-1.9996 3.0001  3.9997
4.9998 -1.0000 2.0001
2.0000 1.0000 -3.0000

A

Again, the estimate of A is in almost perfect agreement with the actual A.

3.2 Analysis of V5 data.

3.2.1 OLS Analysis

The output below is from the GUASS program appearing in the Appendix.

DATA ENTRY

Enter drive and (optionally) a path for stored matrices : e:

Do you want OLS estimation or GLS estimation (Type O or G) : o
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Two-stage regression estimate of matrix A

11.3359
-1.0255
2.8953

-17.3812
4.6563
6.6474

~-20.0568
13.4781
-1.1142

Strike a key when ready . . .

{matrix A,)

Enter tolerance for determining stopping criterion : ? le-6

Iteration

16.7866
-1.3619
-6.4514
-4.6814
-0.2161
7.5284
3.1391
2.8161
~-3.5875
Iteration

19.6008
~-0.5280
~9.4370
-6.6670
~-0.2688
8.6732
3.8456
2.5658
-3.1661

19.6000
~6.6666
3.8456

1.0000

2.0000

-0.5280
-0.2689
2.5658

Least squares estimate

Matrix A =

-9.4365
8.6730
=-3.1661

Convergence established at iteration

5.0000

{matrix As)

Will now compute the predicted values of dependent variable

using this A matrix . . .

Actual matrix of V data :

20.5147
19.3308
18.5321
18.9472
19.3467
19.0564

16.4618
14.4764
13.9134
14.3847
13.8574
16.0857

4.9149
-2.5244
-1.9037
-2.84317
-1.5414

0.0647

8.8700
7.7663
9.1219
8.0765
9.9138
6.6364

17.4071
18.3699
17.4336
20.7829
17.6514
19.8053
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Matrix of predicted V values using As

19.3935 16.1617 5.1456 8.5615 18.5595

19.4626 15.7533 -2.2217 8.9281 18.6431

18.8827 14.6433 -2.0524 8.4062 18.2893

19.2310 13.5857 -2.1333 7.5825  18.8132

18.9423 14.1238 -1.1860 8.7900 18.7114

19.7670 15.0854 -1.2516 7.9731 18.3179

3.2.2 EGLS procedure.
DATA ENTRY

Enter drive and (optionally) a path for stored matrices : e:

Do you want OLS estimation or GLS estimation (Type O or G) : ¢
Are observations WITHIN a location independent (y/n) : y

Two-stage regression estimate of matrix A :

5.2807 4.0204 -12.0021
4.4922 0.6046 4.6958 (matrix Ag)
-0.0344 -0.0036 2.0038

Strike a key when ready . . .

Enter tolerance for determining stopping criterion : ? le-6

Convergence established at iteration 5.0000
Matrix A =
7.3691 1.4302 2.21817
1.7679 3.0079 3.0224 (matrix A4)
-0.2485 -1.8380 -3.6782

Will now compute the predicted values of dependent variable
using this A matrix . . .

Strike a key when ready . . .
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Actual matrix of V data :
20.5147 16.4618 4.9149 8.8700 17.4071
19.3308 14.4764 -2.5244 7.7663 18.3699
18.5321 13.9134 -1.9037 9.1219 17.4336
18.9472 14.3847 -2.8437 8.0765 20.7829
19.3467 13.8574 -1.5414 9.9138 17.6514
19.0564 16.0857 0.0647 6.6364 19.8053

Estimated V values using matrix Ags :
20.2321 16.0520 3.2427 8.5912 18.1242
19.8917 16.1273 2.8459 8.3979 18.2866
20.0945 16.3408 2.8293 7.4869  18.0943
20.1941 16.3616 2.7691 7.7877 18.4586
19.4879 16.1586 2.9880 8.3635 18.3612
19.7536 16.2928 2.9716 7.8296 16.9775

3.3

We now

Do you want to continue iterating on psi matrix (y/n) : n
Execution stopped in line 356

Calibrating at a future location.

examine how well the

various estimated A matrices from the previous

section "predict" the actual V data at a location which was not wused in the
model fitting.
Position G using matrix : v

Xy X9 Ay As Ag Ay actual

2.0 -1.4 91.7878 28.0765  23.4553 14.7445 14.148

1.6 -2.3 88.2433 38.4083 22.4887 15.3834 14.582

1.8 1.4 76.9956 19.5034 19.7228 19.1832 18.289

SSE : 14900.4 763.17 151.20 1.80
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Based on the performance at the chosen three test locations we see that Ay, A9,

and Az performed particularly poorly. The estimate of A obtained using the EGLS

approach performed substantially better than the other three.
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APPENDIX - LISTING OF GAUSS PROGRAMS

MAIN PROGRAM

cls;

count=1;
mseo0ld=9999999999;
note="";

loadp gradp=c:\gauss\cp\gradp;
loadp hessp=c:\gauss\cp\hessp;

format /rd 3,0;

" Calibration in a correlated field”;

" (Generalized Least-Squares Version)”

print;

print;
print;
print;

" Input requirements :

print;

" Xi : (v x 1)

" Wi : (n x p)

n Vi : (n x 1)
print;

" Given the linear model

" (unknown) parameters, the program will estimate using a least-squares

David R. Fox";

University of Wyoming";
November 1988";

It is assumed there are k locations for which the";

following data is available at each location : ";

: Vi=Xi*Bi + Ei where Bi is a (p x 1) vector of";

",

position vector for ith. location.”;
matrix of n observations on p independent variables.
vector of observations on dependent variable.”;

" procedure, the matrix A (p x v) where it is further assumed that :";

print;
print;

dos pause;
cls;
print;
print;
print;
print;

reply=cons;

Bi = A*Xi";

if reply $/="Y" and reply $/="y";

stop;
endif;
start:;
cls;

print;
print;
loopl:;

" Is data to come from keyboard or

device=cons;

DATA ENTRY";

file (k/f)

HAVE YOU LOADED THE GLSCALC PROGRAM

-
’

.
’

(y/n) 2 ¢ "

-
r

.
14

",
’
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if device $/="K" and device §/="k" and device $/="F" and device $/="f";
print;

" * * % ERROR - MUST BE EITHER K OR T !";

" Please reenter";

dos pause;

goto start;

elseif device §=="f" or device $=="F";

loop5:;

" Enter drive and (optionally) a path for stored matrices : ";;
SOUrCce=cons;

load path="source;

loadm w;

loadm v;

loadm x;

nu=rows (x) ;

k=cols(x);

n=rows (w) /k;

p=cols(w);

goto flagl;

endif;

" How many locations are there ? : ";;

k=con(1,1);

k=floor (k) ;

if k<=0;

" < NOT A VALID SELECTION - REENTER >";

goto loopl;

endif;

print;

loop2:;

" How many observations at each of these locations ? :
n=con(l,1);

n=floor(n);

if n<¢=0;

" < NOT AR VALID SELECTION - REENTER >";:

goto loop2;

endif;

print;

loop3:;

" How many INDEPENDENT variables are there (Wi's) ? :";;
p=con(l,1);

p=floor(p);

if p<=0;

LLEPO
r:

< NOT A VALID SELECTION - REENTER >";
goto loop3;

endif;

" Is a constant (BO) term to be included in the model (y/n) : "
replyl=cons;

if replyl $=="Y" or replyl $=="y";

p=p+l; -
note="(First value corresponds to B0 term)";

endif;

if p>n;

print;

" * * * ERROR IN INPUT DATA * * *";
PRINT;

.
14

-
i
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" There are more parameters than observations";
print;

" Please reenter from the beginning”;
dos pause;

goto start;

endif;

print;

loop4d:;

print;

" What is the DIMENSION of the field (1.2,0r 3) : ";:
nu=con(l,1);

if nu/=1 and nu/=2 and nu/=3;

print;

" * % * ERROR - MUST BE 1,2, OR 3 ! * % =*";
goto loop4;

endif;

nul=nu;

cls;

if replyl$=="Y" or replyl$=="y";

nu=nu+l;

endif;

" SUMMARY OF DESIGN PARAMETERS":

" . ",
r

print;

print;

format /14 3,0;

" You have specified the following : ":

print;

print;

" At each of ";:k;;" locations in ";;nul;;"dimensional space”;

" there are ";;p-1;;" independent variables.";

print; :

" The number of observations on each variable at each location is
print;

print;

print;

”

" Is this information correct (y/n) : ";;
reply=cons;

if reply $/= "Y" and reply $/="y";

print;

print;

dos pause;
goto start;
endif;

i=1;

do while i<=k;
cls;

j=1;

" DATA ENTRY";

print;

print;

"LOCATION ";;i;

print;

"Enter the ";;nu;;"POSITION coordinates : "S§+note;
xl=con(nu,1);

.. .
Ilnl
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if i==1;

x=xl;

else;

x=x"x1;

endif;

do while j<=n;
print;

"INDEPENDENT variable information (LOCATION ";;i;;")";

"Enter the ";;p;;"values for observation ";;j;;note;
wl=con(l,p);

print;

"Enter the value of the DEPENDENT variable : ";;
vli=con(1l,1);

if j==1 and i==1;

w=wl;

v=vl;

goto jumpl;

endif;

w=w |wl;

v=v |vl;

junpl:;

j=3+1;

endo;

i=i+l;

endo;

print;

print;

" Do you want to save these matrices to a file (y/n)

reply=cons;

if reply $=="Y" or reply $== "y";

print;

" Enter drive (and optionally a path ) : ";;
destn=cons;

save path="destn;

save w;
" File ";;destn;;"W.FMT successfully saved";
save X;
" File ";;destn;;"X.FMT successfully saved"”;
save v;

v File ";;destn;;"V.FMT successfully saved";
endif;

/* loadp gradp=c:\gauss\cp\gradp; */

/*"  Matrix W";

A

" Matrix V";

v

"  Matrix X";

X; */

/* loadp fcalc=c:\gauss\cp\fcalc; */;
flagl:;

aold=zeros(p*nu,l);

print;

print;

" Do you want OLS estimation or GLS estimation (Type O or G)

olsgls=cons;

r

’

-
.




Calibration in a nonstationary field D.R.Fox. 20

if olsgls $§=="G" or olsgls $=="g";
vv=reshape(v, k,n);vv=vv';

kk=1;

do while kk<=k;
vv[..kk]l=vv[.,kk]-meanc(vv[.,kk]);
kk=kk+1;

endo;

cov=vv'*vv/n;

print;

" Are observations WITHIN a location independent (y/n) : "::
reply=cons;

jump8:;

if reply S$=="y" or reply$=="Y";
psi=cov.*.eye(n);

else;

psi=cov.*.ones(n,n);

loadexe path=c:\gauss\gxe;

loadp pinv=c:\gauss\cp\pinv;
psi=pinv(psi);

goto jump9;

endif;

if n<k and reply $=="y" or reply $=="Y";
print;

print;

" NOTE : Since the number of observations WITHIN each location” ;
" is less than the number of locations, will have to "
" compute the Moore-Penrose inverse of the psi matrix.";
loadexe path=c:\gauss\gxe;

loadp pinv=c:\gauss\cp\pinv;
psi=pinv(psi);

else;

psi=inv(psi);

endif;

else;

psi=eye (k*n);

endif;

jump9:;

if count>1;

goto jump7;

endif;

z=zeros (k*n, k*p);

kk=1;

do while kk<=k;

kkl=(kk-1)*n+1;

kk2=kk*n;

kk3=(kk~1) *p+1;

kk4=kk*p;

wl=wlkkl:kk2,1:p];

z[kk1l:kk2,kk3:kkd]=wl;

kk=kk+1;

Jump7:;
itern=1;
kk=1;
inc=9999;
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/* al0=ones(p*nu,l); */
ganhat=inv(z'*psi*z) *z'*psi*v;
gamhat=reshape (gamhat, k,p) ;gamhat=gamhat’';
a0=gamhat*x'*inv(x*x');

format /rd 9,4;

print;

print;

"Two-stage regression estimate of matrix A : ";;a0;
dos pause;

al0=ones (p*nu,l);

¢ls;

if count>1;

goto jumpé;

endif;

" Enter tolerance for determining stopping criterion : ";;
epsilon=con(1,1);

jump6:;

do while increpsilon;

"Iteration ";;kk;

pp=gradp(&glscalc,al);
ph=hessp(&glscalc,al);

delta=inv (ph) *pp';

inc=delta'delta;

al0=a0-delta;

kk=kk+1;

al;

endo;

cls;

print;

print;

a0=reshape(al0,p,nu);

" Convergence established at iteration ";;kk;

print;

print;

format /rd 9,4;

" Matrix A = ";
al;

print;

print;

" ¥ill now compute the predicted values of dependent variable";
" using this A matrix . . .";
print;

" ";:dos pause;
i=1;

do while i<=k;
il=(i~1)*n;
x1=x[.,i];
i2=1;

do while i2<¢=n;
if i2==1;
wl=w[il+i2,.];
else;
wl=wl|w[il+i2,.];
endif;

12=12+1;

endo;
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if i==1;
vhat=wl#*a0*x1;
else;

vhat=vhat |[wl*a0*x1;
endif;

i=i+1;

endo;

print;

" V and Vhat . . .";
v~vhat;
resid=v-vhat;
mse=resid’'resid;
mse=nse/k/n;

print;

format /re 15,9;

" Mean Square Error is ";;mse;

print;

format /rd 9,4;

if olsgls $=="0" or olsgls §$=="0";
stop;

else;

print;

" Do you want to continue iterating on psi matrix (y/n)

cont=cons;

if cont $=="n" or cont $=="N";
stop;

endif;

if abs{mseold-mse)>=epsilon;
aold=a0;

nseold=mse;
resid=(reshape(resid, k,n))';
cov=(resid'resid) /n;
count=count+l;

goto jump$8;

endif;

endif;

.
.

’

r
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AUXILIARY PROCEDURE FOR COMPUTATION OF EQUATION (2.2.1)

proc glscalec(arg);
local q,i,i1,i2,wl,v1,x1,£,£f1,9gn,al1,bl;
al=reshape(arg,p.nu);
/* i=1;

do while i<=k;
il={i-1)*n;

i2=1;

do while i2<¢=n;

if i2==1;
wli=w[il+i2,.];
vi=v{il+i2,1];
else;

wi=wl |w[il+i2,.];
vi=vl |v[il+i2,1];
endif;

i2=1i2+1;

endo;

x1=x[.,i];
fl=(vl-wl*al*xl) 'psi* (vl-wl*al*xl);
if i==1;

£f=£1;

else;

f=£f+£f1;

endif;

i=i+1;

endo; */
bl=vec(al#*x);
f=v-z*hl;

q=f "*psi*f;
retp{(q):

endp;




