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Executive Summary 
Wagner et al. (2006) define biosurveillance as “a process that detects...outbreaks of 

disease...monitors the environment...and systematically collects and analyses data”. Clearly, 

statistics and statistical methods have a critical role to play in all aspects of biosurveillance: 

detection; monitoring; and data collection and analysis.  

Early work on developing statistical tools for biosurveillance for the most part 

represented a re-working or adaptation of standard, pre-existing methodologies such as 

control charts and attribute sampling inspection schemes. While these methods are certainly 

applicable, there is growing recognition that the data and processes underpinning modern 

biosecurity and biosurveillance deviate from the industrial context in which they were 

originally developed (Shmueli and Burkom in press).  Classical ‘frequentist’ statistical tools 

struggle with the nuances of biosecurity data which invariably exhibit some or all of the 

following analytical ‘curses’: data paucity; non-normality; non-stationarity; heterogeneous 

error structures; and over-dispersion. Other issues such as an inability to deal with data 

from multiple sources, and a model focus on natural/physical processes rather than ‘choice 

processes’ are also cited as reasons for the failure of traditional methods of monitoring and 

analysis. The peculiarities of biosurveillance systems demand ‘new’ statistical approaches to 

both data acquisition and analysis. Techniques that have been successfully applied to the 

analysis of syndromic and climatic data are candidates for biosurveillance. 

This report summarises the outcomes of ACERA Project 05/06 which had as its 

two main aims: 

1. Investigate the applicability of ‘traditional’ monitoring methods to the surveillance 
and detection of bio-security risks &/or threats; and 

2. Undertake statistical research in ‘new’ and emerging areas of bio-surveillance that 
show promise for their ability to identify and predict trends and anomalous 
behaviour in both space and time. 

 
Objectives 1 and 2 above have been met, and as the project evolved over the past 

three years, so too did its direction and emphasis. Chapter 1 of this report is associated with 
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activities under objective 1. Chapter 2 extends the traditional control charting methods and 

develops this within a Bayesian context for quarantine inspection while chapters 3 to 5 

report on research undertaken as part of the second objective. Specifically, chapter 3 

focuses on disease outbreak detection in time and space; chapter 4 examines methods for 

optimising surveillance network designs; and chapter 5 looks at robust methods for 

determining minimum levels of inspection.  

During the course of this project a number of ancillary activities were undertaken. 

These included: 

 Meetings with key U.S. researchers working in the area of syndromic surveillance. This led 
to an enhanced awareness and understanding of statistical methods used for analysing 
space-time clusters of ‘incidences’ (eg. disease outbreaks); 

 
 Creating and fostering  linkages with research groups at Harvard; N.Y. Department of 

Health and Rutgers University (DIMACS); 
 

 Presentations (SRA conference, Melbourne; AQIS, Canberra; Rutgers University, New 
York; International Statistical Institute conference, Lisbon); 

 
 Participation in “Workshop on Info-Gap Applications in the Life Sciences”, University 

of Houston, 11–15 Sept. 2006. An outcome from this workshop was preparation of a 
manuscript titled: “Robust Profiling for Quarantine Inspection” (Fox, D.R., Moilanen,A. and 
Beare, S.); 

 
 Organising an international “Uncertainty and Surveillance” Workshop August 12–17, 

2007 Hobart. The purpose of the workshop was to bring together individuals from a 
diversity of backgrounds to discuss surveillance and uncertainty in the context of bio-
security. Topics considered by the working group were drawn from the following list: 

1. Surveillance for exotic diseases in animal / plant populations 

2. How to design monitoring/surveillance programs for events for which we have no 
data and hope to never have data eg. catastrophic events having unimaginable 
consequences? 

3. Attribute sampling and inspection – how many samples; where; and when in order 
to declare pest or disease-free status? Distinction between sampling zeros and 
structural zeros. 

4. Characteristics of a surveillance network that will make it most robust in 
discovering emerging animal diseases early while adhering to cost and performance 
criteria. 
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5. Resource Allocation (static). Inspection resources are limited. N sites could be 
inspected. There is uncertainty in any or all of: cost of inspection, probability of 
detection, consequence of missed detection.  

6. Resource Allocation (dynamic).This is an extension of the previous problem. Here 
the temporal dimension enters. Inspection resources are limited. N sites could be 
inspected. There is uncertainty in any or all of: cost of inspection, probability of 
detection, consequence of missed detection. We assume the inspector learns from 
inspection process and adjusts his/her behaviour. This can be studied from a 
multitude of perspectives. 

7. Search and evasion:  This is a generalization of the previous problem. The main 
extension is that now we consider strategic behaviour on the part of the target: the 
target adjusts his behaviour in response to the behaviour of the inspector. That is, 
both inspector and target behave strategically. 

 
The outcomes of this project should be viewed as a starting point for further 

exploration and analysis. We have developed to a ‘proof of concept’ stage a number of 

strategies and ideas which we believe have the potential to enhance biosecurity monitoring 

and surveillance. The need to refine these methodologies and ‘road test’ them within an 

actual quarantine inspection program is an essential next step. Early investigations were 

frustrated by a lack of data and resources. ACERA Project 08/04 provided much-needed 

data for this project and efforts to enhance the flow of data and information between 

ACERA and Client agencies is strongly encouraged.  
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Chapter 

1 
B A S I C  

C O N T R O L  

C H A R T I N G  

 
 

1-1 INTRODUCTION 
 

We review some basic statistical concepts as well as introducing some common 

control-charting techniques that have been successfully applied in areas as diverse as the 

manufacturing industries and veterinary epidemiology. The review focuses on the 

applicability of control charts for monitoring temporal trends and aberrations in bio-

security related applications. Control charts are particularly well suited to the visualisation 

and assessing of moderate to large volumes of time-based data and as such would be 

expected to have greater utility for container inspection regimes say, than for detecting the 

occurrence (in space) of an invasive species. Control charts need to be viewed as just one 

method in a tool-kit of available techniques which can potentially assist field officers and 

quarantine risk assessors in identifying ‘unusual’ or ‘aberrant’ trends. For events having very 

low probabilities of occurrence (eg. exotic disease outbreak) the monitoring of ‘time 

between outbreaks’ is a potentially more useful quantity to be charting although as shown 

in this report, the statistical power (ability to correctly identify real ‘shifts’ in the mean time 

between events) of current charting techniques is relatively low.  

The various forms of charting in the context of a quarantine inspection service are 

illustrated using imported food inspection data gathered under ACERA Project 08/04 

“AQIS Import Clearance Data Framework” 
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1-2 Background 

This chapter is intended to provide managers, field officers, and researchers who 

have some responsibility for biosecurity monitoring and surveillance with an introduction 

into the principles and procedures of statistical process control (SPC) and in particular, 

control chart techniques.  

Statistical process control can be broadly defined as the (statistical) methodologies 

and tools by which ‘quality’ is monitored and managed. With this definition, the original 

context of SPC is clear – to ‘control’ the quality of manufactured items in an industrial 

process or setting, although these days the word control is de-emphasised and is usually 

either dropped1 or replaced by improvement. The development of SPC techniques can be 

traced back to the First World War and shortly thereafter with the introduction of the 

Shewhart control chart in the 1920s. General acceptance and uptake of SPC tools in the 

West was relatively slow until it was realised that a major contributing factor to the high 

productivity and quality of Japanese manufactured goods was due to that country’s 

enthusiastic embrace of a total quality philosophy as espoused by leading (American) 

statistician and quality advocate– Edwards Deming. 

 The 1980s saw a resurgence of interest in SPC under the banner of ‘Total Quality 

Management’ or TQM. The ‘six-sigma’ philosophy was conceived during this time in 

response to Motorola’s desire to achieve a tenfold reduction in product-failure levels within 

five years. The Six Sigma methodology (based on the steps Define - Measure - Analyse - 

Improve – Control) underpins the objectives of process improvement, reduced costs, and 

increased profits.  

While much good work was done in the ensuing years with numerous examples of 

demonstrable success attributed to the SPC/TQM paradigm, the trend attracted some 

poorly credentialed ‘experts’ offering radical transformations to new (and often times 

unrealisable) levels of profitability. Not surprisingly, there were some failures and residual 

ill-feeling towards TQM. For example, one large company found that two thirds of the 

                                                 

1 The American Society for Quality Control (ASQC) changed its name to the American Society for Quality (ASQ) on July 
1, 1997. 
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TQM programs it examined had been halted due to lack of results while a 1994 American 

Electronics Association survey showed that TQM implementation had dropped from 86 

percent to 63 percent, and that reductions in defect rates were not being realised (Dooley 

and Flor, 1998). 

Despite some negative experiences in the manufacturing sector, TQM made a 

substantial contribution to quality improvement. The issue these days is one of how much 

quality is enough? For example, would anyone be interested in driving a 50-year old vehicle 

even if it was still under warranty? Or is there any value in ensuring that a computer will run 

reliably for 5 years when generational change in the computer industry is measured in 

months? 

Environmental applications of TQM and SPC techniques have only more recently 

been identified despite the need for robust and reliable monitoring and surveillance 

systems. Fox (2001) attributes this to a lack of cross-talk between the ‘brown’ (industrial) 

statisticians and the ‘green’ (environmental) statisticians. Whatever the reasons, the slow 

uptake of SPC tools for environmental monitoring meant that critical assessments about 

environmental condition and important decisions about responses were being made on the 

basis of often-times flawed statistical advice. The ecologists’ statistical toolkit was generally 

standard issue – t-tests, ANOVA, ANOSIM, and MDS were invariably represented and 

much used while the relatively simple techniques of Xbar/S charts, EWMA charts, and 

capability analysis were virtually unheard of.  

The Australian Guidelines for Fresh and Marine Water Quality 

(ANZECC/ARMCANZ 2000) advocated a more ‘risk-based’ approach to water quality 

monitoring and assessment and in particular, a reduced emphasis on binary decision-

making (t-tests and ANOVA) and increased emphasis on early-warning systems 

underpinned by dynamic visualizations (control charting). Shortly after the release of the 

Guidelines the events of 9/11 and the subsequent discovery of high-grade anthrax sent via 

the U.S. Postal service elevated the importance of early warning systems. In response, U.S. 

State and Federal governments have invested hundreds of millions of dollars in developing 

advanced surveillance systems to detect, among other things, another anthrax attack. 

Recognising that existing monitoring systems which relied on the gathering and processing 
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of hospital records had unacceptable latencies, a new area of research emerged which aimed 

to provide close to real-time monitoring and warning of ‘aberrant’ events.  

Syndromic surveillance is underpinned by a belief that signals of an emerging ‘syndrome’ 

such as a flu outbreak can be identified by an analysis of multiple time-series of ancillary 

variables such as absenteeism records and sales of non-prescription cold and flu 

medications together with an analysis of spatial clustering of outbreaks. Kulldorf (1997) 

developed a spatial scan statistic to help with the latter, while control charts were an 

obvious first candidate for the former. A major barrier at present is the difficulty in 

‘proving’ that any of these new systems has made a difference or even do what they’re 

meant to. As noted by Mostashari and Hartman (2003), no syndromic surveillance system 

has provided early warning of bioterrorism, and no large-scale bioterrorist attack has 

occurred since existing systems were instituted.  

While the use of syndromic surveillance for counter-terrorism (see for example, 

http://www.bt.cdc.gov/surveillance/ears/) is a recent development, similar systems have 

been used for some time now to detect outbreaks, patterns, and trends in diseases and 

epidemics (see for example, http://www.satscan.org/). These techniques do not appear to 

have had any appreciable uptake in Australia or elsewhere around the world in quarantine 

inspection and bio-security. While adoption and uptake of SPC techniques in the Australian 

Quarantine and Inspection Service has been low, a search of the Department of 

Agriculture, Fisheries and Forestry (DAFF) website (www.daff.gov.au) reveals two (publicly 

available) documents that discusses the use of simple control charts (Korth 1997, 

Commonwealth of Australia 2002). One of these documents (Commonwealth of Australia, 

2002) devotes a chapter to the use of control charting as an effective means of detecting 

trends for meat hygiene assessments. Control charting has also been recommended for 

detecting spatial and temporal clusters in veterinary monitoring (Carpenter, 2001) as well as 

testing waste streams from wastewater treatment plants (Hall and Golding, 1998). Stark et 

al. (2006) discuss risk-based veterinary surveillance approaches to protecting livestock and 

consumer health although control-charting was not mentioned.  

This chapter provides a review of basic SPC techniques (focusing on control charting 

methods) with a view to introducing our Client Agencies to ‘new’ or alternative approaches 

to monitoring that may offer enhanced anomaly detection capabilities. With a shared 
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understanding of the control charting principles and an understanding of the strength and 

weaknesses of these methods, it is hoped that opportunities for implementation and 

evaluation in an actual quarantine inspection / bio-surveillance environment will emerge. 

 

1-3 BASIC STATISTICAL CONCEPTS 
Statistics is concerned with random variation. Moreover, statistics is concerned with 

random variation. This does not mean that life for a statistician is totally unpredictable. The 

quantities exhibiting the random variation (the random variables) can be ‘predicted’ or 

described to the extent that in repeated ‘trials’ or observations, the values assumed by the 

random variable can be described by a frequency distribution. Figure 1 shows the histogram 

for the number of imported food items inspected per day between July 1 2006 and 30 June 

2007. 

 

 

 

 

 

 

 

 

Figure 1.  Histogram of number of imported food items inspected each day in the period 1/7/2006 to 
29/6/2007. 

 A number of features are immediately apparent from Figure 1: (i) the range of items 

inspected/day  is from zero to around 440 ; (ii) the most frequent number of inspected 

items is approximately 250 - this is the modal value; (iii) the histogram exhibits bimodality 

(i.e. two ‘peaks’); (iv) an eyeball estimate of an average or mean value is about 200 items/day. 
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With respect to the bimodality, two groupings are evident: <100 inspections/day; 

>100 inspections/day. Further analysis reveals that this is simply a weekend / weekday 

dichotomy as highlighted by 2-way breakdown in Table 12 

Table 1-1. Two-way breakdown of number of inspections according to weekday/weekend. 

  Fewer than 100 
inspections/day

Greater than 
100 
inspections/day

Totals 

Weekend  57 0 57 

Weekday  6 252 258 

Totals  63 252 315 

 

As a companion to the graphical summary provided by the histogram, we generally 

compute relevant statistics for our data. Most software tools (such as MINITAB) combine 

both the graphical and numerical summaries. Individual summaries for the number of daily 

inspections are provided for both weekdays (Figure 2) and weekends (Figure 3). 

 

Figure 2. Graphical and numerical statistical summary number of weekday inspections. Curve overlaying 
the histogram is the best-fitting normal distribution. 

                                                 
2 As an aside, the data in Table 1 are conventionally analysed using contingency table methods and a chi-squared test of 
independence. The result of such an analysis when applied to Table 1 is highly significant (p<0.0001) suggesting that the 
number of items inspected is not independent of the weekday/weekend classification. 
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Figure 3. Graphical and numerical statistical summary number of weekend inspections. Curve overlaying 
the histogram is the best-fitting normal distribution. 

 

The numerical summaries presented on the right-hand side of Figures 2 and 3 are 

explained below: 

Anderson-Darling Normality Test 

Because many statistical procedures (including control charting) rely on an 
implicit assumption of underlying normality in the distribution of the quantity of 
interest, the best-fitting normal distribution for the data at hand has been 
identified and overlaid on the sample histogram. While this allows for a visual 
inspection of the plausibility of the normality assumption, a more formal 
statistical test can be performed. There are many such tests – some good, others 
not so good (see for example Stephens, 1974). One such test that has been shown 
to perform well under a wide range of conditions is the Anderson-Darling test. 
The implicit hypothesis being tested is that the sample data has been drawn (at 
random) from a much larger population of values which is normally distributed. 
In this case, the test-statistic is a value of A2 (0.14 in Figure 2). The numerical value 
is rather meaningless by itself. In order to gauge the significance of the result we 
look at the companion p-value. The rule-of-thumb is that small p-values lead to a 
rejection of the implicit hypothesis (otherwise known as the null hypothesis). So, 
how small is small? Convention dictates that p-values of less than 0.05 are 
‘significant’. However you are cautioned against the unthinking adoption of this 
0.05 norm. Since the p-value of 0.971 is well above the nominal 0.05, we do not 
reject the hypothesis of normality. 
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Mean 

This is the usual arithmetic mean or average of the data. Other means are available 
(geometric and harmonic) although they are not widely used. 

 
StDev and Variance 

This is the standard deviation and is the most common measure of spread (or 
dispersion) of a data set. It is defined as the positive square root of the variance. 
Since the variance is computed by summing the square of differences formed by 
subtracting the (sample) mean from each data value, it (the variance) can only ever 
take on non-negative values. The reason for preferring the standard deviation as a 
measure of spread is that it has the same units as the original data values. 

 
Skewness 

As the name suggests, this is a measure of skewness or asymmetry. Skewness can be 
negative (long-tail to the left) or positive (long-tail to the right). Symmetrical 
distributions have zero skewness.  

 
Kurtosis 

This is not a quantity that is used often in its own right. It is a numerical measure 
of ‘peakedness’ of a distribution. A flat distribution is said to have low kurtosis 
while a highly peaked distribution has high kurtosis. Different software packages 
will compute skewness slightly differently. The normal distribution has a skewness 
of 3. MINITAB and other software tools subtract 3 from the computed skewness 
so as to make the measure relative to a normal distribution. The skewness of -
0.0834 in Figure 2 is very close to zero, implying that this sample data is about as 
peaked as a normal distribution. 

 
 

Minimum and Maximum 

These are self-evident.  

 
First, second, and third quartiles 

The quartiles are numerical values that divide the distribution into four equal parts. 
The first quartile (Q1) is such that 25% of all values are less than or equal to Q1; 
the second quartile (Q2) is such that 50% of all values are less than or equal to Q2; 
while the third quartile (Q3) is such that 75% of all values are less than or equal to 
Q3. Q2 is also known as the median value. The difference Q3 - Q1 is referred to as 
the inter-quartile range (IQR) and is a measure of spread or variation. 
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Confidence Intervals: mean, median, and standard deviation 

An explanation of a confidence interval would require considerably more than a 
few lines. However, a practical interpretation is that we may assert that the true 
parameter value lies within the stated interval with stated degree of confidence. 

 

A quantity of potentially greater interest than the number of inspections performed is 

the failure rate, p defined as f

I

N
p

N
 where fN is the number of failed items out of IN

inspected.  The histogram of daily failure rates (Figure 4) is slightly positively skewed (i.e to 

the right) and is not well described by a normal probability model. 

 

Figure 4. Daily inspection failure rate histogram for food items imported between 17/2006 and 30/6/2007. 
Blue curve is best-fitting normal distribution. 

Descriptive statistics for p for weekdays and weekends are given in Table 1-2. It is 

seen that while far fewer inspections are undertaken on weekends, the average failure rate is 

essentially the same as for weekdays, although the variability in failure weekend failure rates 

is much greater. 

Table 1-2.  Numerical summaries of inspection failure rates for weekdays and weekends. 

day_type  N  N 
(missing) 

Mean  SE Mean  StDev  Minimum  Q1  Median  Q3  Maximum 

weekday  258  0  0.02493  0.0011  0.01761  0  0.01219  0.0211  0.0342  0.09272 
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weekend  57  0  0.02524  0.00669  0.05048  0  0  0  0.03399  0.24 

Another way of presenting the data is the box-plot.  The box-plot for the proportion 

data is shown in Figure 5. There are a number of variations on how the box-plot is 

constructed so you should check your computer software to be clear on the specifics. The 

information given by MINITAB (the statistical software used to produce Figure 5) is 

shown in Box 1 and general information on graphical summaries from SYSTAT is shown 

in Box 2. 

A number of features are immediately apparent from Figure 5: (i) the distributions of 

failure rates are approximately symmetrical around a common average of about 0.02 

although the weekend distribution is slightly positively skewed; and (ii) the weekend 

distribution shows greater variability than the weekday distribution as evidenced by the 

larger interquartile range (IQR) and a number of relatively large values. 

 

 

Figure 5. Boxplot for inspection failure rate for weekends and weekdays. 
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Box 1. MINITAB's Help on Box-plots 

 
 
 
Box 2. SYSTAT's help on graphical summaries. 

 
 

In addition to the graphical summaries already presented, it will be useful to display 

the time-series plot (ie. values of a variable plotted over time) for the monitored data. 

Figure 6 shows such a plot of the weekend and weekday data. Given that the number of 

failures is very much smaller than the number of items inspected, plotting both quantities 

on the same axes is of limited value. Given that both the number of containers inspected 

and the number of ‘detects’ vary with time, a more useful quantity to plot is the failure rate, 

p (Figure 7).  
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Figure 6.  Time series plot of number of containers inspected per week (black line) and number of 
containers found to be of quarantine concern (red line). 

 

 

 

Figure 7.  Times series plot of overall failure rate for food imports. Solid blue line is a loess smooth. 
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Figure 7 shows the failure rate generally fluctuates between zero and 5%. The blue 

line in Figure 7 is the result of applying a local smoothing procedure, called a ‘loess’ to the 

failure rate data. The idea behind the loess (and other procedures like it) is that the high 

frequency oscillations can be removed by sub-setting the data and replacing individual data 

points by some statistic (such as the median of the data in the sub-set). In this way, the 

relatively ‘noisy’ data are smoothed. The degree of smoothing can be varied so as to reveal 

different features in the time-series data. In the case of Figure 7, we see that the failure rate 

declined slowly between July 2006 and October 2006; was relatively constant between 

October 2006 and January 2007 and then increased slightly until April 2007. There was a 

significant increase between April and June 2007. Also evident in Figure 7 is a period of 

low variability between February and April 2007 followed by a period of substantially 

higher variability. Whether or not these observations correlate with other known facts or 

can be attributed to known causes is a matter for the relevant agencies. One way of helping 

address the ‘significance’ of these variations is through the use of control charts. 

 

1-4 Statistical significance 
While a comprehensive treatment of statistical inference is outside the scope of this 

introductory note, a brief discussion of the main ideas underpinning ‘statistical significance’ 

is warranted.  

To place the discussion in context, suppose that it is known from lengthy monitoring 

that the proportion of imported food items that fail inspection is normally distributed with 

a mean of 0.02493 and a standard deviation of 0.01761. Statisticians write this in an 

abbreviated way as 2~ (0.02493,0.01761 )N where  denotes the true proportion. Figure 

8 shows a plot of the probability density function (or pdf) for this particular normal distribution. 

Now, suppose we collect n=52 weekly proportions and looked at the average 

(arithmetic mean) proportion of containers classified as a quarantine risk. Statistical theory 

tells us that if 2~ (0.02493,0.01761 )N ,then the average of n sample proportions is 

distributed as 2~ (0.02493,0.01761 )N n . For n=52, this distribution is shown in Figure 

9 (together with the original distribution of Figure 8). 
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Figure 8. Theoretical distribution for the true proportion of weekday inspection failure rate. 

 

 

Figure 9. Theoretical distributions for an individual proportion (black) and the average of 52 proportions 
(red). 
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individual proportion of say, 0.045 or more is expected to occur quite frequently it is highly 

unlikely that the average of 52 readings would be this high if the individual values had been 

drawn from a population described by the red curve in Figure 9. In statistical parlance, we 

would say that an average (of n=52) proportion of 0.045 or greater is a highly significant 

result. This immediately raises the question of ‘how significant is significant’ or where do 

we draw the line between statistical significance and non-significance? Convention dictates 

(and this is a potentially dangerous approach without understanding the ramifications) that 

we choose a cut-off value (call it * ) such that the probability *P     is ‘small’ – and 

small is taken to mean 0.05. For our example, we find that a * equal to 0.0379 has an 

associated ‘tail probability’ of 0.05 (Figure 10). So, if we are only interested in large 

proportions, then we will declare a sample average (of n=52) to be statistically significant if it is 

numerically greater than 0.0379. If we are interested in both increases and decreases in the 

assumed proportion, we split the 0.05 area into two ‘tail’ areas each of 0.025. This generates 

a two-sided test of significance (Figure 11). 

 

Figure 10. Assumed distribution for mean of n=52 sample proportions. One-tail, 5% 'critical 
region' identified by red shading. 
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It is also seen from Figure 11 that the upper limit of 0.0404 is equivalent to 1.96 

standard deviations from the mean (it is easily verified that the lower limit is also 1.96 

standard deviations from the mean, but obviously in the opposite direction). These 1.96

‘sigma limits’ or ‘control limits’ form the basis of ‘early warning’ or detection limits on 

control charts. The multiplier (1.96) determines the width of the limits which in turn 

determines important statistical properties associated with ‘false triggering’. Thus, there is a 

trade-off to be struck: very narrow limits will give high sensitivity to shifts in the ‘process’ 

but at the expense of increased rates of false-triggering. By default, limits on control charts 

are placed at either 2 or 3 standard deviations from the mean (centre-line). Limits 

determined through non-statistical considerations (eg. biological or ecological significance) 

can also be used, although the implications for ‘statistical significance’ would need to be 

determined if the chart was to be used in an inferential mode. 
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1-5 Control Charts 
 

The Basic Shewhart Chart 
 

The simplest control chart is essentially Figure 7 with the addition of upper and/or 

lower control limits. This could be done manually, although it is easier to have computer 

software do it. The output from the MINITAB statistical software package is shown in 

Figure 12. 

Note that the upper and lower control limits in Figure 12 are not constant. This is 

because the denominator in the expression f

I

N
p

N
 is not constant (as noted by the 

warning message in the lower right corner of Figure 12). The red plotting symbols in Figure 

11 indicate ‘violations’ or ‘excursions’ outside the control limits. By itself, this chart raises 

no particular concerns, other than there were two occasions when the proportion was 

‘significantly’ high and three occasions when it was ‘significantly’ low. Various 

modifications and options are available in the presentation of control charts such as Figure 

12. For example, if we think there are two ‘epochs’ as discussed earlier, we can provide 

separate limits in each epoch (Figure 12). 

 

Figure 12. P-chart for inspection failure rate data. 
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For data that are collected over time a number of time-based control charts are 

available. Some of the more common/useful are described below. 

 

Time-based charts 
 

The simplest way of smoothing over time is by ‘block-averaging’. Figure 13 shows a 

time series divided into a number of non-overlapping ‘blocks’ of constant width. The 

average of the data in each block is computed and plotted at the centre of the block and 

these points can be connected by straight line segments to reveal a smoother version of the 

series.  

 

Figure 13. Smoothing using block averaging. 

 

Block averaging is a relatively unsophisticated way of smoothing and has some 

potential difficulties – not least of which is that the mean of each block is computed 

without reference to the rest of the series. In other words there is no ‘history’ built in to the 

mean of an individual block and so the ‘smoothed’ series can still exhibit some erratic 

jumps. To overcome this, we can take the basic ‘block’ or ‘window’ and step it across the 
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series so that there is overlap. This is achieved by replacing the ‘oldest’ k observations with 

the most recent k observations. The block averages in this case result in a moving average 

(MA) of the original series (Figure 14). A MA plot for the weekday inspection failure rate 

data is shown in Figure 15. The MINITAB help for this procedure is given in Box 3. 

 

 

 

Figure 14.  Moving average scheme. A block or 'window' is stepped incrementally over the series 
and the block mean computed and plotted. 
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Figure 15.  Moving average chart of weekday inspection failure rate. Sub-group size =1; MA length=5. 

 

 

Box 3. MINITAB's Help on moving average chart 

 

 

29
/ 0

5/
20

07

23
/0

4/
20

07

16
/0

3/
20

07

8/
02

/2
00

7

2/
01

/2
00

7

24
/1

1/
20

06

19
/1

0/
20

06

13
/ 0

9/
20

06

8/
08

/2
00

6

3/
07

/ 2
00

6

0.100

0.075

0.050

0.025

0.000

M
ov

in
g 

A
ve

ra
ge

__
X=0.0249

UCL=0.0438

LCL=0.0061



Page | 25 

By adjusting the parameters of the moving average plot, different levels of smoothing 

can be achieved.  For example, Figure 16 shows a MA plot for the proportion data using 

the averages of 3 weekly sub-groups. With this degree of smoothing, the three periods are 

clearer. 

 

Figure 16.  Moving average for weekday inspection failure rate. Subgroup size defined by week of 
year (usually 5); MA length=4. 
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1

1
k

i

i




  and for a given k the solution to this is the root of the equation 2 1 0k    . 

For example, if k=10, we find 0.5002  . A plot of these weights compared to the simple 

arithmetic mean is shown in Figure 17.  

The recursive formula for computing values of the EWMA chart is 

  11       0< <1t t tEWMA X EWMA      

In other words, the current EWMA is a weighted average of the current data value and the 

EWMA in the preceding period. Figure 18 shows the EWMA chart for the weekday failure 

rate data with 0.2  . 

 

 

Figure 17. Comparison of exponentially declining weights (red bars) compared with equal-weighting 
scheme (blue rectangles) for k=10. 
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Figure 18.  EWMA chart for weekday inspection failure rate. Subgroup size defined by week of year 

(usually 5); EWMA weight=0.2. 

 

1-6 Time between events 
We have seen how control charts can be used to monitor variables (such as the number 

of quarantine threats detected) or attributes (eg. the proportion of containers having a 

quarantine threat). When ‘events’ (eg. the ‘arrival’ of a quarantine risk at a port of entry) 

occur randomly in time, an alternative approach is to monitor the inter-arrival time. One 

advantage of this approach is that the inter-arrival time is available at the time of the arrival 

whereas if we are tracking the number of arrivals then these need to be aggregated over 

some time period before a meaningful analysis can be performed. However, some 

modifications to the standard charts are required to accommodate the fact that the 

distribution of inter-arrival times is usually (highly) non-normal. Details of the theoretical 

development can be found in Radaelli (1998). More recently, control charts for the number 

of ‘cases’ between events (so-called ‘g’ and ‘h’ charts) have been developed and applied to 

monitoring hospital-acquired infections and other relatively rare adverse health-related 

events (Benneyan 2001a, 2001b). 

By way of example, consider Figure 19 which depicts the ‘arrival’ of a quarantine 

threat over time. Figure 20 shows a more detailed ‘slice’ through this pattern of arrivals. By 
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measuring the ‘white-spaces’ (i.e. computing the differences 1i it t  )in Figure 20 we obtain 

data on the inter-arrival times. The complete listing of data for this example is given in 

Appendix A. 

Our analysis of the inter-arrival data commences with an inspection of basic 

distributional properties (Figure 21). 

 

 

Figure 19. Time sequence of detection of quarantine threats. 

 

 

 

 

 

It is clear from Figure 21 that these data are highly skewed and that the normal 

distribution is not an appropriate probability model.  
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Figure 21.  Histogram of inter-arrival times with smoothed version (red line) and theoretical normal 
distribution (black line) overlaid.  The normal distribution provides a poor description of this data 
(evidenced by the both the shape and probability mass associated with negative values of days between 
detects). 

The smoothed histogram in Figure 21 suggests a ‘J-shaped’ probability model is more 

appropriate. One such model is the negative exponential probability distribution. This choice is 

also supported by statistical theory which says that if events arrive randomly in time 

according to a Poisson probability model with an average rate of arrival of λ per unit time, 

then the distribution of the inter-arrival time is negative exponential with parameter λ. The 

probability density function (pdf ) for the negative exponential is given by Equation 1.1 and 

the corresponding cumulative distribution function (cdf ) is given by Equation 1.2. 

( ) ,    , 0x
Xf x e x        (1.1) 

( ) 1 ,    , 0x
XF x e x         (1.2) 

For this distribution, the mean is 1
 and the variance is 2

1


. Notice, that this 

immediately implies that the variance increases/decreases with an increasing /decreasing 

mean – in contradiction to many ‘conventional’ statistical techniques which assume 

constant variance. 
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One simple way of estimating the parameter λ is to equate the theoretical and sample 

means. In this case, we have 1 7.713  and hence our estimate is 1
7.713

ˆ 0.130   . A plot 

of the histogram of the data with a negative exponential distribution having ˆ 0.130 

overlaid is shown in Figure 22. The adequacy of this fit is more readily seen by comparing 

the empirical and theoretical cumulative distribution functions (Figure 23). 

The ‘false-triggering’ due to the non-normality of the data is evident in the I-Chart3 of 

Figure 24. There are two ways of over-coming this. The first is to modify the control chart 

itself to account for the non-normality. The second approach is to transform the data so that 

the transformed data are normally distributed (or approximately so) and then apply 

standard control charting techniques to the transformed data. We consider each of these 

approaches in turn. 

 

Figure 22.  Histogram of days between detects. Smoothed histogram indicated by red curve, theoretical 
exponential distribution depicted by black curve. 

 

                                                 
3 An “I-Chart” is simply a control chart for individual observations ie. ungrouped data. 
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Figure 23.  Empirical cdf  for days between detects (red curve) and theoretical exponential cdf (blue curve). 

 

Figure 24.  Chart of individual values of days between detects (I-Chart). 
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1-7 Transformations to Normality 
 

In section 1-3 we looked briefly at the issue of statistical significance. The discussion 

focussed on a normally distributed random variable. Violations of the normality assumption 

will tend to invalidate the results of any statistical procedure which invokes this 

assumption4. One way to overcome this problem is to identify a mathematical 

transformation of the data so that the transformed data are normally distributed or 

approximately so. There is a tendency among practitioners to spend an inordinate amount 

of time on the identification of the ‘best’ transformation (best in the sense that the resulting 

data are most nearly normal). This is often wasted effort since many statistical procedures 

(including control charting) are relatively robust to mild to moderate departures from 

normality. The over-riding objective should be to identify a simple mathematical 

transformation that at least results in data that is approximately symmetrical. The 

identification process can be by trial and error or by some ‘automated’ procedure. An 

example of the latter is the so-called Box-Cox family of transformations. The idea is simple 

enough: we wish to find the value of the transformation parameter  (not to be confused 

with the in equations 1.1 and 1.2) so that data transformed according to  

        0

ln( )    =0

X
Y

X









 



 

exhibit a greater degree of normality than the untransformed data (the Xs). Having found 

this we proceed to work with the transformed values,Y . MINITAB and other software 

packages simplify the task of determining  for a given data set. The ‘optimal’  is 

identified as the abscissa value at the minimum on a Box-Cox ‘profile plot’ (Figure 25) – in 

this case we find 0.24  . With this value of  we then transform the data and then use 

control charting methods on the transformed data.  

 

                                                 
4 The severity of the violation cannot be anticipated in advance since it is a function of the degree to 

which the assumption is violated, the manner in which it is violated, and the robustness of the statistical 
procedure to such violations. 
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Figure 25.  Box-Cox profile plot for the days between detects. Optimal lambda is 0.24. 

 
The effectiveness of the transformation is evident from the histogram of the 

transformed data (Figure 26). 

 
 

Figure 26.  Histogram of transformed days between detection with smoothed version (red curve) and 
theoretical normal (black curve) overlaid. 
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To see how the transformation process works, consider setting an upper control limit 

on the days between detects such that this limit would only be exceeded 10% of the time 

when there has been no change in the underlying response-generating mechanism. In other 

words, on the transformed scale, we wish to find that value *y which satisfies the following

* 0.10P Y y    . From Figure 26, we see that the transformed data (Y) are well 

described by a normal distribution having mean 1.416 and standard deviation 0.3683. Either 

using tables of the normal distribution or computer software (as in Figure 27) we determine 

that * 1.89y  . We can ‘back-transform’ this *y to determine an equivalent *x  on the 

untransformed scale by noting that 

1* * *P Y y P X y P X y                 

That is,
1* *x y  . With * 1.89y   and 0.22  we obtain * 18.1x   which compares 

favourably to the theoretical result of 17.8 obtained directly from the negative exponential 

distribution (Figure 28). 

 
Figure 27.  Fitted normal distribution to transformed days between detects with upper 10% point indicated. 
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Finally, we plot the I-Chart for the transformed days between detects and note that 

there is now only one ‘out-of-control’ situation indicated (Figure 29) compared with the 

previous seven (Figure 24). 

 
 

Figure 28. Theoretical negative exponential distribution for untransformed days between detects and upper 
10% point indicated. 
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Figure 29.  I-Chart for transformed days between detects. 

1-8 Control chart for time-between-events 
Rather than transform the data as described in the preceeding section, alternative 

methods have been developed which modify existing control charts for use with 

untransformed (and non-normal) data. Radaelli (1998) describes procedures for setting 

control limits for both one and two-sided control charts for inter-arrival times. Only the 

one-sided case is considered here since we are generally only interested in tracking 

significant deviations in one direction (eg. where the inter-arrival time between quarantine 

risk detects is decreasing).  

Let iX be the ith inter-arrival time. An ‘out-of-control’ situation is declared if i LX T

in the case of decreasing inter-arrival times (ie. increasing counts) or i UX T  in the case of 

increasing inter-arrival times (ie. decreasing counts) where LT and UT are suitably chosen 

positive constants. Suppose that an ‘in-control’ situation corresponds to a mean inter-arrival 

time of 1
0
 (where is the parameter in equation 1) then using Equation 1.2, it can be 

determined that 
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  0
0 1 LT

i LP X T e                   (1.3) 

0
0

UT
i UP X T e                         (1.4) 

Equations 1.3 and 1.4 are analogous to the Type I error in a hypothesis test: it’s the 

probability of a false-positive. As in statistical hypothesis testing, the Type I error-rate (α) is 

set to be some arbitrarily small value (eg. α =0.05). Thus, the upper and lower control limits 

can be determined by setting Equations 3 and 4 equal to α and solving for either LT or UT . 

Thus we have: 

 1
0 ln 1LT           (1.5) 

 1
0 lnUT          (1.6) 

In addition to having a low α, we also require our control chart to correctly signal an 

important deviation from ‘in-control’ conditions. Suppose we wish to detect a change from 

0 to 1 with some high probability, (1 ) where 1 0k   (k>1 for a one-sided lower 

chart; k<1 for a one-sided upper chart). That is: 

 

0
1 1 (1 )Lk T

i LP X T e             (lower chart)   (1.7) 

0
1 (1 )Uk T

i UP X T e            (upper chart)   (1.8) 

 

Substituting LT and UT in Equations 7 and 8 respectively, we obtain: 

 ln 1(1 ) 1 ke       (lower chart)   (1.9) 

 ln(1 ) ke     (upper chart)   (1.10) 

The performance characteristics for both lower and upper one-sided charts are 

shown in Figures 30 and 31. Both of these figures show that the ability to detect even 

relatively large shifts (eg. a doubling or halving) in the mean inter-arrival time is low 

(typically less than 0.2) for values of α less than 0.1. For example, using a 10% level of 
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significance (ie. alpha =0.10), the one-sided chart of Figure 30 suggests that there is a less 

than 20% chance of detecting a doubling (ie. k=2) of the mean arrival rate (or a halving of 

the inter-arrival time). 

 

Figure 30. Performance characteristics (as measured by equation 1.9) for a one-sided, lower control chart. 

 

 

Figure 31. Performance characteristics (as measured by equation 1.10) for a one-sided, upper control chart. 
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1-9 DISCUSSION  
In this chapter we have provided a review of basic statistical concepts as well as 

introducing some common control-charting techniques that have been advocated elsewhere 

(Carpenter 2001, Commonwealth of Australia 2002) as being particularly suited to 

monitoring for temporal trends and aberrations in bio-security related applications. Control 

charts are particularly well suited to the visualisation and assessing of moderate to large 

volumes of time-based data and as such would be expected to have greater utility for 

container inspection regimes say, than for detecting the occurrence (in space) of an invasive 

species. Control charts need to be viewed as just one method in a tool-kit of available 

techniques which can potentially assist field officers and quarantine risk assessors in 

identifying ‘unusual’ or ‘aberrant’ trends. For events having very low probabilities of 

occurrence (eg. exotic disease outbreak) the monitoring of ‘time between outbreaks’ is a 

potentially more useful quantity to be charting although as shown in this report, the 

statistical power (ability to correctly identify real ‘shifts’ in the mean time between events) 

of current charting techniques is relatively low.  

Since the events of September 2001, there has been a substantial research push in the 

area of ‘syndromic surveillence’ with the accompanying development of new approaches 

and methods to detecting unusual patterns in a space-time continuum. Some of these 

techniques would appear to have direct applicability to the activities of Biosecurity Australia 

and AQIS. 
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Chapter 

2 
B A Y E S I A N  

C O N T R O L  

C H A R T I N G  

 

2-1 INTRODUCTION 
In this chapter we investigate some more specific aspects of control charting and in 

particular, focus on the use of Bayesian statistical methods. This work advances 

conventional control charting methods described in chapter 1 by adaptively updating the 

alerting mechanisms as well as explicitly incorporating prior belief about the state of 

monitored ‘system’. The methodology is developed in the context of routine quarantine 

inspection of imported foods although the potential applications extend to other areas of 

bio-surveillance where data is being gathered over time and ‘early warning’ triggers are 

required. 

Detailed background information on current quarantine inspection practice can be 

found in the report by Robinson et al. (2008). Robinson et al. (2008) also provide details of 

a suggested risk-based framework for allocating scarce resources to the monitoring and 

surveillance effort.  

The present study is concerned with the implementation phase of a specific risk-based 

approach to monitoring.  Most quarantine surveillance and monitoring programs are 

candidates for a statistical approach since they invariably involve small sampling fractions 

and there overarching requirement to balance the cost of sampling with the probability of 

failing to detect a threat. Our focus in this chapter is on the temporal component of 

monitoring – that is, detecting important ‘shifts’ or ‘aberrations’ in monitored data in close 

to real time. Chapters three and four examine statistical methods associated with the spatial 

dimension of bio-surveillance. 

A common requirement of statistical surveillance techniques is to detect important 

changes in a stochastic process at an unknown time, as quickly and as accurately as possible 

(Sonesson and Bock 2003). Many of the reported techniques use likelihood based methods 
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to detect step changes in a parameter of interest (eg. process mean or variance). While a 

number of papers have appeared recently on statistical surveillance in the context of 

epidemiology, public health, and syndromic surveillance (Doherr and Audigé 2001, 

Sonesson and Bock 2003, Marshall et al. 2004, Höhle and Paul 2008) relatively little has 

been published on quarantine inspection. 

The utility of conventional statistical process control (SPC) tools such as the Shewhart 

chart, EWMA chart, and other control charting variants for quarantine inspection was 

covered in chapter one of this report.  Control charting methods have a number of 

attributes which make them particularly well-suited to the task of identifying ‘abnormal’ 

trends in the detection of non-compliant shipments, such as an ‘early-warning’ capability 

and easily communicated visual displays of historical results. While some of these tools 

(such as the EWMA chart) have the ability to couple past history and present observations, 

they are conventionally data-driven approaches that do not readily accommodate expert 

opinion or existing understanding about the underlying response-generating process. This is 

potentially an important consideration, particularly when a new commodity or product is 

shipped into the country for which historical data does not exist or in cases where other 

ancillary information concerning the commodity becomes available (for example increased 

susceptibility to contamination at the point of manufacture).   

Another difficulty with standard control-charting tools is that they are constructed on 

models which assume process parameters are known exactly and observations are i.i.d5. 

(Tsiamyrtzis and Hawkins 2007). This is problematic since parameter values are rarely 

known and secondly, the assumption of i.i.d. data is frequently violated – particularly for 

time-series data which often exhibit moderate to strong autocorrelation. More recently, 

Bayesian control charting methods have been developed to help overcome some of these 

limitations. Baron (2001) used the theory of optimal stopping of Markov sequences to 

develop efficient algorithms for the detection of a distributional change in sequentially 

collected data while Hamada (2002) used Bayesian tolerance interval control limits in the 

context of attribute sampling. Our approach to Bayesian control charting for quarantine 

                                                 
5 independently and identically distributed 
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inspection has been motivated by Menzefricke (2002) who used Bayesian predictive 

distributions to derive rejection regions for various monitoring applications.  

It is not the aim of this report to provide a comprehensive review on Bayesian control 

charting techniques. However, to facilitate the subsequent mathematical development we 

digress momentarily to explain some of the underlying concepts. Readers requiring a more 

comprehensive treatment of the topic may find the collection of papers in Colosimo and 

del Castillo (2007) a useful entry point.  

2-2 Fundamentals of Bayesian Control Charting 
The techniques presented in chapter one fall within the realm of ‘frequentist’ statistics. 

This mode of statistical thinking is by far the most common and underpins nearly every 

undergraduate course in statistics. The frequentist view of the world is one in which the 

only admissible probabilities are those that are expressible as the ratio of the number of 

outcomes which are favourable to the ‘event’ under consideration to the total number of 

outcomes, or alternatively, can be thought of as the limiting value of the relative frequency of 

some phenomenon – hence the term frequentist statistics. A point of clear demarcation 

between frquentist and Bayesian statistics is the role of subjective probability. There is no role 

for subjective probability in a frequentist framework; for Bayesians it is pivotal.  

The term Bayesian derives from the Rev. Thomas Bayes (b. 1702, London - d. 1761). 

Bayes was not known as a mathematician and his only significant work "Essay Towards 

Solving a Problem in the Doctrine of Chances" (1763), was published posthumously in the 

Philosophical Transactions of the Royal Society of London. Although a largely turgid piece of work, 

Bayes’ essay identified a fundamental proposition in probability. This was a profound insight 

and provided a logical and consistent way of updating prior belief or probability in the light 

of new evidence. The formula was named Bayes rule or theorem after him. The updated 

probability is referred to as the posterior probability.  Unlike frequentist statistical inference 

which tests hypotheses or estimates (unknown) parameters on the basis of information 

contained in data alone, the Bayesian paradigm combines prior belief about unknown 

parameters with evidence from data using Bayes’ rule. More formally, the aim of Bayesian 

inference is then to make inferences about a parameter  or future observation y using 



Page 44 

probability statements conditional on the data y . Both parameters and future observations 

are treated as random variables in a Bayesian framework and we talk of the posterior density of 

 [denoted  p y ] and the posterior predictive density of y [denoted  p y y ]. 

The simplest version of Bayes’ rule for two ‘events’ A and B says that the conditional 

probability that event A occurs given event B has occurred is given by the formula: 

   
 

P A B
P A B

P B


 where the probability in the numerator is the joint probability (i.e. 

the probability that both A and B occur). Bayes’ theorem applies equally to probability 

density functions (pdf). Thus if y denotes data and  some parameter or vector of 

parameters, then    
 

 
 

,P y P y
P y

P P

 


 


  and the numerator is the joint probability 

density function for y and . The roles of y and can be interchanged in this formula and 

we have immediately that: 

   
 

 
 

,P y P y
P y

P y P y

 



  and a comparison of  P y  and  P y reveals that

         ,P y P P y P y P y     . Finally, substituting this last expression for  ,P y  into 

the expression for  P y gives Bayes’ law for densities: 

     
 

P P y
P y

P y

 
  . 

This formula takes a prior density for  [i.e.  P  ]and converts it into a posterior density 

 P y via the term 
 
 

P y

P y


called the Bayes factor. The denominator in the expression for 

the posterior density does not involve  and only serves to normalise the pdf (i.e. make it 

integrate to unity). Inference for based on the posterior is therefore unaffected by working 

with      P y P P y   instead of the normalised posterior. Thus we see that the 

posterior distribution is proportional to the product of the prior times the likelihood of the 
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data. In frequentist inference, only the likelihood is used; in Bayesian statistics the 

likelihood is modified by our prior belief. 

In the remainder of this chapter we describe a new/novel Bayesian control charting 

approach to quarantine inspection. The motivation in the present context is that 

conventional (i.e. non-Bayesian or Frequentist) approaches to control charting need to be 

‘primed’ with hard data in the absence of known parameter values. While this might not be 

an issue in a manufacturing context where production data is both plentiful and continuous, 

it is problematic for the monitoring of processes for which little background data is 

available. This problem becomes particularly acute for the development of a surveillance 

program aimed at detecting a new threat for which there is no prior data. Similarly, in the 

case of monitoring a rare phenomenon, a paucity of data is inevitable. In such cases the 

monitoring data will be comprised of a string of zeros – corresponding to ‘no detect’ 

outcomes. Frequentist statistical methods will thus estimate the true rate of occurrence as 

zero with a standard error of zero. The Bayesian paradigm on the other hand commences 

with the specification of a prior density for the parameter of interest (such as the true rate of 

occurrence) and continually updates this as new data becomes available. The method is 

illustrated with application to food import data used in the previous chapter (Robinson et 

al. 2008). 

2-3 A BAYESIAN CONTROL CHART FOR 
QUARANTINE INSPECTION 

 

The following development assumes attribute sampling whereby at time t, tn ‘units’ are 

selected from a total volume of trade comprising tN units and the result of inspection is a 

binary outcome: “pass” or “fail”. The time index t will generally represent daily increments. 

On each sampling occasion two related control-charting questions are considered: (i) is the 

observed failure rate for the current sample within acceptable limits?; and (ii) is the 

cumulative failure rate for all samples inspected to date within acceptable limits?  These 

objectives mirror the detection of ‘pulse’ and ‘press’ stresses in natural ecosystem 

management (Underwood, 1994).  In answering questions (i) and (ii) we wish to 
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incorporate both historical monitoring data and prior information on the true failure rate, 

 .  We do this through the use of a conditional probability distribution for the data given 

 and a prior probability model for . These two elements can be combined to obtain a 

predictive distribution for a new sample. The mathematical detail is developed in the 

following section. Readers not interested in this can skip forward to section 2-4. 

2-3-1 Mathematical detail 
 

The problem as formulated leads us to consider the random variable tX  - the number 

of failed units in the sample of tn taken at time t. Assuming independent Bernoulli trials for 

each inspected unit, the conditional distribution of tX  is binomial (we have dropped the 

time subscript to improve clarity where it is understood that all results pertain to the 

current sample unless otherwise indicated): 

   (1 )  ;  0,1, ,0 1x n x
X

n
f x x n

x     
     
 

    (2.1) 

Uncertainty in the true failure rate is reflected in the prior distribution  p  . A 

suitable choice for  p  is the beta density: 

1 11
( ; , ) (1 ) ;  0 1,  0,  0

( , )
a bp a b a b

a b
   


         (2.2) 

Initial values for the a and b parameters in equation 2.2 can be chosen according to 

various strategies depending on how much or how little we know about the true rate of risk 

for a particular commodity, country, test etc. Robinson et al. (2008) discuss some of these 

strategies in the context of food imports and recommended the use of a Jeffrey’s prior 

corresponding to 0.5a  and 0.5b  . A plot of this Jeffrey’s prior and two ‘vague’ or ‘non-

informative’ prior densities are shown in Figure 32. 
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Updating the prior 

The underlying principal in the adaptive monitoring process is that our estimate of the 

true failure rate is constantly revised as new data is gathered. In the early stages of 

monitoring, our probability model for the true failure rate will be driven by prior 

information.   

 

Figure 32.  Illustrative non-informative priors for true failure rate, theta. 

 

At each time increment the current prior probability for  is updated using standard 

Bayesian methods to generate a posterior marginal pdf. The procedure is described below. 
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stable process, the distribution of Y is also binomial with parameters  ,N  . However N 

will rapidly become ‘large’ (i.e greater than ~ 30) and provided  is not close to either zero 

or one the binomial distribution is well approximated by a Poisson distribution with mean

N . 

Now the marginal posterior distribution for Y as a function of the parameters a and b 

is: 

     
1

0

, ,p y a b l y p a b d         (2.3) 

where  l y  is the likelihood of the data (y) given  . Thus, equation 2.3 can be 

written as: 

     
1

11

0

1
, 1

! ( , )

yN
bae N

p y a b d
y a b

 
  






 
  

  
   (2.4) 

Equation 2.4 can be evaluated using numerical integration or alternatively computed 

using equation 2.5 (a derivation of equation 2.5 is provided in Appendix B). 

   

 

1 1

10 0

, 1 ;  
! !

                                                                   0,1, ,  , 0

my y m

mj r

NN j a y a r
p y a b

y j a b y a b r m

y N a b

 

 

                     
 

 



  (2.5) 

At time t we have available the data       1 1 2 2, , , , , ,t tN Y N Y N Y . The likelihood is 

thus 

1 0
1

( , ; ) ( , );     0
t

i i i
i

l a b y p X y y a b y


        (2.6) 
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The maximum likelihood estimates, â and b̂  at time t are found by simultaneously 

solving equations 2.7a and 2.7b.  

( , ; )
ˆ : 0

ˆ
l a b y

a a
aa

 
  

 
      (2.7a) 

( , ; )ˆ : 0
ˆ

l a b y
b b

b b

      
      (2.7b) 

The updated distribution for  at time t is equation 2.2 with parameters â and b̂ . We 

use this posterior to obtain the predictive distributions for the number of failures 1( )tX  in 

the next sample of units to be inspected and the cumulative number of failures 1( )tY  . 

Predictive distributions for 1tX  and 1tY   

 

The predictive distribution for 1tX  can be written as 

   
1

1 1

0

t t tp X y f x p y d            (2.8) 

where    
( ) ( )p y p

p y
p y

 
   ;  

1

0

( ) ( )p y p y p d     and  p  based on the most 

recent estimate using equation 2.2 with parameters  ˆˆ,a b .  

 It can be shown (Appendix C) that 1t tp X y   is given by equation 2.9. 
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(2.9) 

We next consider the predictive distribution for 1tY  . First, it can be seen that

   1 1t t tp Y s Y y p X s y      . The unconditional distribution of 1tX  ,  1tp X  is 

obtained as follows: 

     
1

1 1

0
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d

p beta a b . Thus,  1tp X  is a beta-binomial 

distribution and the predictive distribution for 1tY  is therefore: 
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   (2.10) 

We next discuss how the predictive distributions are used to set control limits for 

routine inspection programs. 

2-3-2 Adaptive control limits 

The idea of a control limit is to provide an early warning that the underlying response 

generating mechanism has departed from an assumed stable state. In the present context 

we wish to set two limits (designated as RL1 and RL2) on the number of failures in the next 

batch of sampled units. RL1 is set such that, when exceeded, it draws our attention to the 

fact that there is a higher number of failures in that particular sample of n units than would 

be expected. Exceedence of RL2 signifies an unusually high number of failures which would 

significantly increase the cumulative failure rate. Clearly the two limits are related since 
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triggering of RL2 implies a triggering of RL1, although the converse is not necessarily true. 

Thus, the second limit will tend to be more liberal than the first.   

(1 )100%  response levels RL1 and RL2 are obtained by solving equations 2.11 and 

2.12 respectively. 

   
1 1

1 1 1 1
1

( ; , ) :     
t tn n

t t t t t
x r x r

RL n y r p X r Y y p X r Y y  
 

  
  

 
        
 
 
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   
1 1

2 1 1 1
1

( ; , ) :     
t tn n

t t t t t
x r x r

RL n y r p Y r Y y p Y r Y y  
 

  
  

 
        
 
   (2.12) 

These ideas are illustrated with an example using the AQIS food import data set (see 

Chapter 1) for the period 1-Jul-2006 to 30-Jun-2007. Detailed information about the data 

collection methods can be found in Robinson et al. (2008). 

2-4 EXAMPLE – AN ADAPTIVE CONTROL CHART FOR 
FOOD IMPORTS 

Between 4/7/2006 and 29/6/2007 a total of 1,718 items were imported from a 

particular country. These were predominantly food items such as soy sauce, instant 

noodles, fish, pasta, and crabmeat. There are generally multiple consignments each day and 

the AQIS database records a “PASS/FAIL” result for each consignment.  

2-4-1 Updating the prior 

For the purpose of illustrating the proposed control charting methods, we have 

aggregated the results on a daily basis and simply noted the number of failures tx out of tn

consignments on day t. A plot of the observed daily failure rate and cumulative failure rate 

is shown in Figure 33. Initial estimates of the failure rate are highly variable although 

ultimately converge to about 3% as evidenced by the blue trace in Figure 33. 
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Figure 33. Daily consignment failure rate (red curve) and cumulative failure rate (blue curve) for 
imports between 4/7/2006 and 29/6/2007. 

 

We initially assumed a beta(4,20) distribution for the prior on  which has 99% of its 

probability mass between zero and 0.374, a mean of 0.167 and a modal value of 0.136. This 

choice reflects little or no prior knowledge about  other than we expect it to be less than 

0.4. Using the methods of the previous sections we can update the prior at any point in 

time using all the available information available at that time. This could be as frequently as 

every day or say, once a month. Figure 34 shows the situation at the end of a year of 

monitoring.  

The top panel in Figure 34 shows the initial beta(4,20) prior (blue curve) and the 

posterior density at the end of the 1 year period (red curve). The posterior is a 

beta(6.248,165.337) distribution which has a mean of 0.036, a median of 0.035, and a modal 

value of 0.031. 99% of the posterior distribution lies in the interval (0, 0.08). 
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The lower panel of Figure 34 shows the cumulative failure rate as a function of time since 

monitoring commenced. 

Figure 34. Top: original (subjective) prior density (blue curve) and posterior density (red curve) for true 
failure rate after 1 year.  Bottom: Empirical cumulative failure rate (red line), overall mean failure rate (blue 
dotted line) and mean of posterior distribution after 1 year (green dashed line). 
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It is evident from Figure 34 and the related distributional summaries that the 

relatively vague prior has been considerably ‘sharpened’ after a year of monitoring. The 

posterior density is compactly centred about the overall failure rate of 0.03 and a Bayesian 

95% highest posterior density credibility interval for the true consignment failure rate is 

readily determined to be {0.011, 0.065}.  The upper limit of a 1-sided 95% credibility 

interval is 0.063 which suggests that a failure rate more than the equivalent of 1 in 16 is 

evidence of a significant increase in import failure.  A more refined instrument for alerting 

to changing failure status has been provided in the form of the two triggers, RL1 and RL2. 

We next illustrate how these operate with reference to the present example. 

2-4-2 Setting adaptive triggers 

By way of example, suppose the current date is August 7, 2006 and we wish to place 

approximate 99% limits on the number of failures for imports for the following day. There 

were a total of 128 consignments from the country in question since the start of our 

monitoring period (we take this to be July 4 2006) – three of which failed inspection, giving 

a current failure rate of 2.3%. Solving equations 2.7a and 2.7b we obtain the maximum 

likelihood estimates ˆ 3.805a  and ˆ 167.819b  . There are 17 consignments on August 8 

2006. With 128N  , 3y  , 17n  and 0.01  we use equation 2.11 to determine RL1=2 

and equation 2.12 to determine RL2=2. Note, because the outcome of inspection is a discrete 

random variable, equations 2.11 and 2.12 will generally not be able to be satisfied exactly. 

Thus in this case, the actual value for  is 0.008 for RL1 and 0.01 for RL2 as distinct from 

the nominal 0.01  . As it turned out there were 5 failures on August 8 2006 and this 

outcome would have tripped both our triggers for further investigation. 

We also note that in the early stages of monitoring, RL1 and RL2 will be quite close (in 

this case they’re identical) reflecting the fact that not much data has been gathered and a 

significant increase in failure rate on any one occasion has a relatively large impact on the 

cumulative failure rate. As monitoring progresses, there will tend to be greater separation 

between RL1 and RL2, although the difference will still tend to be small given the relatively 

small sample sizes involved. By way of example, we now advance to June 28 2007. By this 

time, there have been 1,680 consignments resulting in 58 failures. The approximate 
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0.01  triggers for the following day’s 15 consignments are RL1=2 and RL2=3. The 

actual result was zero which is clearly acceptable.  

2-5 Discussion 
The adoption of a Bayesian framework has allowed us to extend traditional control 

charting methods discussed in chapter 1 to accommodate expert option and/or prior belief 

about the monitored process. Furthermore, the Bayesian approach provides some other 

important enhancements. For example, ‘ignorance’ about a new or previously undetected 

threat is readily accommodated and the intrinsic updating of prior information means that 

these methods are evolutionary, learning and adaptive. We believe these are important 

prerequisites for a successful biosecurity surveillance and monitoring system.  

It is important to distinguish between monitoring activities that aim to predict or 

forecast future events with those whose primary objective is to alert or flag the existence of 

an abnormal event. A comprehensive biosurveillance monitoring strategy will incorporate 

both pro-active and reactive components. Control charting techniques are reactive, 

although depending on how they are constructed and implemented, they can provide a 

close to real-time monitoring capability. A difficulty with pro-active systems such as those 

used in syndromic surveillance is that forecasting (particularly rare events) is exceedingly 

difficult with success depending very much on model choice and parameterisation. Indeed, 

as noted by Burkhom et al. (2007) a critical issue for syndromic surveillance / forecasting 

systems is their sensitivity to “expected and unexpected data outliers”. Burkhom et al. 

(2007) go on to further state that “for unexpected outliers, we have implemented 

automated outlier removal schemes to avoid baseline contamination for the adaptive 

regression, but such schemes can produce unexpected effects and need further study”. We 

regard this as a flawed strategy for two reasons: (i) an “expected outlier” is an oxymoron; 

and (ii) the automated removal of observations that are, in some sense, aberrant is to be 

strenuously avoided. It was precisely because of the automated removal of ‘outliers’ that the 

hole in the ozone layer was initially undetected. It was only when the ‘offending’ data was 

reinstated and the time series data reanalysed that the seriousness of the problem became 

apparent.  Given that the utility of forward looking systems is critically dependent on which 
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data is included/excluded in the modelling process, it seems to us that data screening tools 

such as control charts have an important role to play in the development of prospective, 

forecasting tools.  

Hitherto, Bayesian methods have not been widely used in biosecurity / biosurveillance 

applications although a number of papers have appeared recently which suggest that there 

is a growing awareness of the potential utility of this statistical paradigm. Wong et al. (2005) 

used Bayesian networks to extend the Population-wide Anomaly Detection and Assessment 

(PANDA) algorithm for syndromic surveillance while Hogan et al. (2007) describe a 

Bayesian aerosol release detector (BARD) that combines medical surveillance and 

meteorological data to provide an early warning capability for the release of B. Anthracis.  

In this chapter we have outlined a Bayesian approach to control charting within the 

context of quarantine monitoring and extension. We have provided a proof-of-concept 

evaluation of the method using AQIS food import data (Robinson et al. 2008) which 

demonstrates that the approach shows promise and warrants further development and 

evaluation. Future work could usefully focus on the elicitation of prior probability 

distributions as well as the incorporation of other covariates. 
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Chapter 

3 
S P A C E - T I M E  

D I S E A S E  

S P R E A D  

 

3-1 INTRODUCTION 
Australia is free of the world’s worst animal diseases such as foot and mouth disease 

(FMD) and bird flu (avian influenza H5N1) although the list of potential threats is long 

(http://www.daff.gov.au/animal-plant-health/pests-diseases-weeds/animal). There are 

good reasons for taking whatever steps are necessary to ensure that this status is 

maintained.  The 2001 FMD outbreak in the United Kingdom had disastrous consequences 

with the slaughter of over 4.2 million animals and substantial economic loss (Riley 2007). 

Four outbreaks of what is thought to be FMD occurred in Australia in the 

nineteenth century however there have been no reported outbreaks for over 100 years. 

Equine influenza (EI) is another highly contagious disease afflicting horses, donkeys, mules, 

and zebras. Shortly after Animal Health Australia released its disease strategy for equine 

influenza (Animal Health Australia 2007) an EI outbreak was detected in the Sydney area. 

The disease spread rapidly through northern NSW into Queensland where it concentrated 

in the Brisbane region (DPI 2008). It wasn’t until Christmas Day 2008 that Australia was 

officially declared EI disease-free.  

In handing down his findings The Hon. Ian Callinan (AC) highlighted 

shortcomings in the Government’s monitoring and surveillance protocols for biosecurity 

threats (Callinan 2008). Similarly, an analysis of the 2001 FMD outbreak in the United 

Kingdom revealed serious shortcomings in data collection, processing, and analysis 

activities in the initial stages of the outbreak (AusVet-CSIRO 2005).  The AusVet-CSIRO 

report suggested that Australia accordingly review its data requirements and mathematical 

modelling in order to understand the quantitative aspects of animal disease outbreaks.  

In a recent review of infectious disease outbreaks Riley (2007) noted a number of 

interesting phenomena in the spatial dynamics of disease propagation in human and animal 

populations. Examples of these included “spatial waves of infection” and the tendency of 
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disease incidence to occur in spatial clusters. The phenomenon of epidemic travelling waves 

is not new with historical examples provided by the European plague in the Middle Ages, 

the influenza pandemic in the early 20th century and the spread of cholera in Asia and East 

Europe during the 1960s (Fuentes and Kuperman 1999) 

As with any disease, prevention is better than cure and continuous surveillance 

coupled with stringent border and pre-border controls is essential to the maintenance of 

Australia’s disease-free status. However, if an outbreak of a highly contagious and 

economically devastating disease such as EI or FMD was to occur, the ability to predict the 

subsequent spread of the disease would greatly enhance the prospects of early control and 

containment. As in the 2007 EI outbreak, enhancements to the biosecurity network can 

only be made once the deficiencies are understood. To this end, an ability to pin-point the 

location of the initial outbreak is a critical first step. 

This chapter details the outcome of investigations into the development of a 

cellular automata model to describe the spatial dynamics of infectious disease spread. 

Additionally, the output of the cellular automata model is combined with limited, spatially-

temporally referenced empirical data on actual disease numbers to provide an estimate of 

the most likely location and time of the initial outbreak.  

3-2 A CELLUAR AUTOMATA MODEL FOR DISEASE 
SPREAD 

There is a considerable literature on epidemic models although most population models 

are zero-dimensional and describe intrinsic epidemical features such as the existence of 

threshold values for the spread of an infection, the asymptotic solution for the density of 

infected individuals and density-dependent effects (Fuentes and Kuperman 1999). 

However, Riley (2007) suggests that spatial models of infectious disease transmission which 

integrate knowledge of the infection process are “the only plausible experimental system ... 

to investigate observed patterns and to evaluate alternative intervention options”.  

Mathematical models describing population dynamics usually use either differential or 

difference equations depending on whether ‘time’ is treated as a continuous or discrete 

variable.  An alternative to this approach are cellular automata (CA) methods having 
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discrete time increments and a matrix representation of a geographical network. A set of 

rules governs the evolution of the automata such that the state of an element at each time 

step is expressed in terms of its own state and those of its neighbours at earlier time steps. 

As noted by Fuentes and Kuperman (1999), CA methods enjoy a number of advantages 

over conventional differential-difference equation approaches such as considerably faster 

computational speeds and the ease with which certain epidemiological features can be 

incorporated as well as local and seasonal effects. CA models have been used to model a 

range of problems associated with pathogen and disease spread including rabies in fox 

populations (Benyoussef et al. 1999) and FMD in feral pigs in Queensland (Doran and 

Laffan, 2005). 

CA models are potentially well-suited to modelling the spread of an infectious disease 

such as FMD which can exhibit long-range spatial dynamics as a result of airborne 

spreading (Cannon and Garner 1999). Indeed, it has been suggested that a 1981 FMD 

outbreak in the UK was initiated by windborne particles carried across the English Channel 

from France (Alexandersen et al., 2001; Donalsdson, 1983; Sørensen et al. 2000). Unless the 

wind is erratic, it is reasonable to assume that disease incidence data would exhibit a 

relatively high degree of spatial continuity that was aligned with the predominant wind-

direction. According to Cannon and Garner (1999), most wind-borne spread over land is 

less than 10 km although this can be up to 60 km. This suggests that an anisotropic spatial 

covariance model having a 10 km ‘range of influence’, say, could potentially be useful in 

describing the spatial correlation structure in disease spread.  The risk of airborne spread of 

FMD in Australia was assessed by Garner and Cannon (1995). Figure 35 is taken from their 

report and indicates that conditions favourable for the survival of FMD in aerosols occur at 

least 50% of the time in most of south-east Australia and all of Tasmania. The use of a 

discrete grid as the basis for representing and modelling the spatial dynamics of disease 

spread is not only convenient but parallels the way in which management agencies convey 

risk to the broader community (Figure 37). Our approach is to take the region of interest 

(e.g. Figure 36) and overlay a grid whose spacing is commensurate with the phenomenon of 

interest (Figure 38). 
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Figure 35. Average number of days per year that are conducive to persistence of FMD virus in aerosol 
(From Cannon and Gardner 1999). 

 

Figure 36. Zonation of EI infected regions in Queensland during the 2007/08 outbreak. Source: 
http://www2.dpi.qld.gov.au/extra/ei/maps/QLDInfectedCluster.gif (accessed 25 January 2008) 
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 The starting point for the CA model is a probability model that describes the spatial 

extent and orientation of the likelihood that a ‘diseased’ cell (i.e. one in which the presence 

of the disease has been confirmed) will ‘infect’ neighbouring cells. The general situation is 

depicted in Figure 39.  

 

 

Figure 37. Illustration of grid representation used by authorities in managing EI outbreak. (Source: Source: 
http://www2.dpi.qld.gov.au/extra/ei/maps/map8.gif ) 
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Figure 38. The region of interest in Figure 36 with grid overlay that forms the basis of the CA modelling 
approach. 

 

 

Figure 39. The grid in Figure 38 showing an ‘infected’ cell (red shading) and associated spatial pattern for 
disease transmission. 
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The mathematical detail underpinning the development of the CA model is 

presented in the next section. 

3-2-1 Mathematical formulation 

Our problem formulation is constructed around the general representation depicted in 

Figure 40. Our ‘target cell’ (ie. the one of interest) is located in row u and column v of a 2-D 

grid overlayed on the region of interest. Associated with each grid cell is a Bernoulli variable 

 indicating disease status6 viz: 

,

1    if cell {i,j} is infected at time 

0       otherwise                                   
t
i j

t
 



 

with , ,1t t
i j i jP     . 

 

Figure 40. General CA situation with cell of interest (red shading) and neighbouring cell. Z is a binary 
variable indicating cell’s disease status. Region bordered by heavy line depicts spatial extent of influence or 
impact of cell on its neighbours. 

 

We further make the following assumptions: (i) infection is an absorbing state, that is, 

once a cell is ‘infected’ it remains infected (at least for the period of interest); and (ii) the 

                                                 
6 Clearly, it is not the cell per se which is infected – it is the occurrence of at least one infected individual within the cell. 

,u v

,i jz
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risk of infection is a function of the disease status of neighbouring cells and the distance 

between the target cell and infected neighbouring cells. 

We define the transmission ‘effectiveness’,  r as the probability that an uninfected 

cell at distance r from an infected cell will become infected during the period {t, t+1}. 

Without loss of generality, we denote ,i jr to be the distance between the centre of cell at 

grid location {i,j} and the centre of the target cell. 

We next consider the updating step as time is incremented by 1 unit. Hence: 

 1
, , ,1 0 cell {u,v} becomes infected in the interval , 1t t t

u v u v u vP P P t t                
 

(3.1) 

For the sake of brevity and simplicity, we let ,i jI denote the event that target cell in row-

column position {u, v} becomes infected by cell {i, j} in the interval {t,t+1} and ,i jI its 

complement ie. , ,1i j i jP I P I        .  Thus, 

    , , , ,1 1t t
i j i j i j i jP I r                (3.2) 

For the target cell not to become infected during the period {t, t+1} requires an 

unsuccessful transmission from every cell to the target. Assuming the effectiveness of 

transmissions are unrelated, we have: 

    
   

, , , ,
,

, ,

1 1 1t t
i j i j i j i j

all i j

i j u v

P I r  
  
   

             (3.3) 

Substituting equation 3.3 for the last term in equation 3.1 gives the result: 

    
   

1
, , , , , ,

,

, ,

1 0 1 1 1t t t t t
u v u v u v i j i j i j

all i j

i j u v

P P r   

  
   

 
 

                 
 
 

 
 

or 
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      
   

1
, , , , , ,

,

, ,

1 1 1 1t t t t t
u v u v u v i j i j i j

all i j

i j u v

r     

  
   

 
 

         
 
 

     (3.4) 

We next consider candidate models to describe the transmission effectiveness as a 

function of separation from an infected cell.  

Models for transmission effectiveness 

It is assumed in this development that the transmission effectiveness is only a function 

of the distance to an infected cell – in other words, our model is omnidirectional or anisotropic. 

Although the exact form of the function describing this relationship needs to be informed 

by expert knowledge and disease-specific data, it is not unrealistic to assume a radial basis 

function for  r  - such as a Gaussian model. One such possibility is given by equation 

3.5. 

2

( )
r

r k e 


      (3.5) 

Different choices for the constants and k  in equation 3.5 give rise to different spatial 

patterns of transmission effectiveness (Figure 41).  

Initial conditions 

Equation 3.4 is recursive and therefore requires the specification of an initial state for 

each cell, ie.  0
, ,i j i j   . The process of supplying an initial guess for 0

,i j followed by the 

updating step parallels a Bayesian analysis whereby a prior probability is transformed into a 

posterior probability via a likelihood function (see section 2-2 for a discussion). As in a 

Bayesian analysis, 0
,i j can be chosen to reflect the degree of belief in the initial infection 

status. In the absence of any prior information, knowledge, or understanding (other than 

that captured in equation 3-5) we will assume an initial configuration that is the equivalent 

of a Bayesian non-informative prior. For example,  0
, ,i j p i j   where p is a constant 
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corresponds to the case where the initial outbreak is equally likely to occur (or have 

occurred) anywhere in the region of interest.  

 

Figure 41.  Illustration of a spatial probability model for disease spread for generic cell {i,j} at fixed point in 
time. Grid represents region of interest. Height of surface is proportional to probability of spread of 
infection from cell {i,j} to neighbouring cells. Each plot represents a different range of influence from 
highly localised (bottom right) to far-ranging (top left). 

 

Modelling the disease spread 

To illustrate how equation 3.4 models the spread of a disease, we consider the case of 

equally-likely outbreak locations. At T=0, we assume an outbreak at a particular grid 
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location7  0 0,r c  and make the assignment 
0 0

0
, 1r c   . The probability that neighbouring 

cells become infected during the next time increment is given by  ,i jr where ,i jr is 

distance from  0 0,r c to a neighbouring cell at grid location {i,j}. Figure 42 illustrates the 

spatial characteristics of the transmission effectiveness probability contours based on a 

particular parameterisation of equation 3-5 with 0 012, 8r c  . At the next time 

increment, the probability of infection is updated for every grid cell using equation 3.4 and 

the process repeated N times. 

 

 

Figure 42. Illustrative contours of probability representing likelihood of infection around cell having grid 
coordinates {12,8}. 

 

A slightly more complex scenario is shown in Figure 9 which depicts a non-uniform 

assignment of initial outbreak probabilities at time T=0 together with ‘snapshots’ at T=40, 

T=80, and T=120. 

                                                 
7 Or set of locations 
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Figure 43.  3-D depiction of progression of disease spread starting with initial outbreak pattern at T=0 and 
at three subsequent time periods. Vertical scale is probability of infection. 

The attractive feature of Figure 43 (or more correctly, the underlying model) is it can be 

used as the basis of inference about the time of an outbreak.  For example, we assume the 

outbreak was at grid cell  0 0,r c and that we have available sample data on disease 

incidence at some time 0T T k t  where 0T is the outbreak time and k is the number of 

time increments each of length t units. We then use a maximum likelihood estimation 

(mle) procedure to estimate k as the value (call it k̂ ) that maximises the joint probability 

function for the observed data using the spatial probability model of equation 3.4 evaluated 

at the kth time step. An example of the likelihood function plotted against k is shown in 

Figure 44. This procedure can be repeated for all grid locations thereby generating a total of

T=0 T=40

T=80 T=120
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x N r c  such curves, where r and c denote respectively the number of rows and columns 

of the grid. The estimated outbreak time and location is associated with the liklelihood profile 

whose maximum is the largest among all N plots. The mle for the outbreak time is 


0

ˆT T k t  . This procedure is detailed more formally in the next section. 

 

Figure 44. Likelihood profile plot for k (number of time increments since outbreak). 

 

3-3 Inferring the time and location of an outbreak  
The general situation was described in the previous section. We now develop the 

mathematical and computational detail associated with the maximum likelihood procedure 

for estimating the time and location of an outbreak.  

We commence by assuming that at some time 0T T k t  we observe for grid cell {i,j} 

a proportion, ( )T
ijp  of infected units (animals, people, agricultural plots etc.) where 
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( )
( )

( )

T
ijT

ij T
ij

X
p

n
 and ( )T

ijX is the number of infected units in cell {i,j} out of a total ( )T
ijn inspected 

in grid cell {i,j} (Figure 45).  

 

Figure 45. General situation depicting region of interest with vertical bars depicting empirical rates of 
infection.  

 

The total number of units in grid cell {i,j}, ( )T
ijN may or may not be known. In any event, 

we assume ( ) ( )T T
ij ijN n . If we further assume that the inspected units represent a random 

sample from the population of susceptible units and that the observations on disease status 

are independent of each other, then a reasonable probability model for the ( )T
ijX data is the 

binomial distribution.  
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Hence 

 ( ) ( ) ( )~ ,T T T
ij ij ijX binom n            (3.6) 

with ( )T
ijX and ( )T

ijn defined above and ( )T
ij given by equation 3.4. 

 We next define the set S of cardinality m to be comprised of the row-column 

indexes of all sampled grid locations. For fixed T and given outbreak location in grid cell

 0 0,r c , the log-likelihood function for the unknown ( )T
ij is given by equation 3.7. 

       
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

,

; , , log log 1T T T T T T T
ij ij ij ij ij ij ij

i j S

x r c x N x  


       (3.7) 

Note that the right hand side of equation 3.7 is a function of 0 0and r c by virtue of the 

relationship between ( )T
ij and  ,i jr with ,i jr  the distance between grid locations  0 0,r c

and  ,i j . Thus, for fixed T, equation 3.7 is evaluated for all x N r c possibilities obtained 

by varying  0 0,r c over the entire grid. It is then a simple matter to identify the location at 

which equation 3.7 attains its maximum (Figure 46). 

We now proceed to illustrate the method with an example. 
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Figure 46. Illustrative likelihood surface for outbreak location. 

 

3-4 Example 
To test the efficacy of the estimation procedure, we generated { , }x n data pairs on a 26 x 

26 grid. The outbreak occurred at time 0T T  in grid cell  0 010; 15 r c and sample data 

was obtained78 t time units later. The transmission effectiveness model used is given by 

equation 3.8. 

      22
0 0 00

2
( ) exp

               

i j ji
ij

r r c c c cr r
r

a bab
     (3.8) 

with a=0.0025 and b=0.0055. 

A random sample of n=146 cells was selected from these 676 pairs (see Appendix D for 

a listing of the data used). Figure 41 shows the sample proportions ( /ij ijx n ) overlaid on a 

contour plot of the theoretical probability field from which they were generated. The 

maximum likelihood procedure described in the previous section was programmed within 
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the Mathcad 14® symbolic computing environment. A listing and description of the 

routines can be found in Appendix E. The likelihood was evaluated for 200 time 

increments for each of the 676 possible outbreak locations. The maximum was attained at 

grid location  0 010; 15 r c (Figure 48) after 78 time increments (Figure 49) which 

corresponds exactly with the parameters used to generate the data. Given that we used the 

true probability model (equation 3.8) to compute the likelihoods, the perfect agreement 

between estimated and actual parameters is not totally unexpected. Nevertheless, we regard 

this example as a test of the integrity of the estimation procedure. Substantial discrepancies 

between actual and estimated parameters for this example would have cast doubt over the 

utility of the modelling and estimation procedures.  

 

Figure 47.  3-D visualisation of empirical data (infection rates) used in the example. Underlying contour 
lines derived from theoretical response-generating model. 
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In reality, neither the functional form nor the parameter values for ( )ijr will be known. 

There are a number of strategies which could be employed in such cases. The simplest, 

would be to use expert opinion and prior studies to identify a suitable probability model. A 

more complex and computationally intensive approach would be to specify the functional 

form but leave the parameters as unknown. A relatively straightforward modification to the 

estimation algorithm could be made so that the unknown model parameters were estimated 

simultaneously with the outbreak location and time by maximising over all  0 0;r c x k 

space-time combinations within some defined parameter space,  .  

 

Figure 48. Profile plot showing contours of likelihood of outbreak location. Maximum attained at grid 
position located at row 14, column 9. Notes: (i) this plot is rotated 900 relative to Figure 47; (ii) plot is offset 
by 1 unit in each direction due to placement of origin at {0,0}, hence most likely grid location for disease 
outbreak is cell {10,15}. 
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Figure 49. Likelihood profile plot for temporal component of CA model. Most likely outbreak time is 78 
time prior to time of sampling. 

 

3-5 Discussion 
In this chapter we have outlined an approach based on a cellular automata model 

coupled with empirical observations on incidence rates to estimate both the time and 

location of an initial disease outbreak. Traditional epidemiological modelling approaches 

typically focus on the temporal component using differential – difference equations to 

model the progression of disease spread through time as well as describing other 

(important) phenomena such as threshold and density-dependent effects. Being discrete, 

the CA model can be readily implemented on a spatial grid of arbitrary size and resolution 

and has the advantage of being able to model complex space-time interactions. When 

coupled with a probability model for the response-generating mechanism the CA model 

can be used to infer the initial outbreak time and location using maximum likelihood 

methods. While there is no doubt that once an outbreak of a disease has been detected, 

much of the subsequent monitoring effort would be focussed on tracking its progression in 

space and time with a view to containment and eradication. Nevertheless, an ability to 
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pinpoint the outbreak location and time has been acknowledged as an important capability 

for post-outbreak evaluation and follow-up activities – particularly if the outbreak was the 

result of a failure in procedures, process, or facilities. In other cases it may be important to 

understand whether a disease outbreak was of human or natural origin. For example, the 

official Soviet explanation of the 1979 outbreak of anthrax in Sverdlovsk, U.S.S.R. was that 

it was caused by contaminated meat. The U.S. intelligence community suspected the 

outbreak was due to the aerosol release of B. Anthracis from a military microbiology facility. 

Resolution of this issue was important in deciding whether or not the Soviet Union was in 

violation of international treaties to which it was a signatory (Hogan et al. 2007).   

A number of spatial and spatio-temporal modelling tools for biosurveillance have used 

conventional statistical modelling approaches such as generalised linear mixed models 

(GLMMs). For example, the BioSense program run by the U.S. Center for Disease Control 

(http://www.cdc.gov/BioSense/) utilises a variant of GLMMs known as small area 

regression and testing (SMART)to enhance early detection and situational awareness of 

possible biologic terrorism attacks (Bradley et. al. 2005). However, as noted by Fricker 

(2008) the method in BioSense only uses spatial information to bin data into separate time 

series and is thus not strictly a spatial model. Most spatial models for biosurveillance utilise 

the scan statistic (Kulldorff, 1997) to detect disease clusters. The method presented in this 

chapter models the space-time trajectory of infectious state and couples this with a 

maximum likelihood method to infer initial outbreak time and place using monitored data. 

While our approach has been developed to a proof-of-concept stage, further 

enhancements would increase the appeal of this methodology. For example, the 

transmission effectiveness model (equation 3-5) could be extended to incorporate ancillary 

information about the target and neighbouring cells such as the number of susceptible 

individuals for an animal disease or the size of area at risk for a plant disease. Thus, in 

considering the transmission between any two grid cells (denote them cell I and cell J), a p-

dimensional vector of ancillary values 1 2, , ,
T

IJ IJ IJ IJpX x x x    could be defined (where 

one of the IJx is the distance between I and J). A candidate model for transmission 

effectiveness that utilises all the available information is the multivariate logistic function 

(equation 3.9). 
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 
 

exp

1 exp

T
IJ

IJ IJT
IJ

X

X





  


        (3.9) 

where  is a  x 1p vector of parameters and IJ is a stochastic error term with some 

assumed distribution (for example 2~ (0, )IJ N   . To be applicable, values for the 

parameter vector  would need to be either supplied (based on knowledge of the system) 

or estimated using data from a separate calibration study. 
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