
1600 Sampling and Inspection for Monitoring Threats

and monitoring. In addition to the safety data captured
in phase IV trials, all serious, unexpected AEs that
occur in the general population that uses the drug
must be reported to the sponsor and to regulatory
agencies. New or unexpected serious AEs, which are
rare, can usually be detected only in postmarketing
phase when relatively large numbers of patients use
the drug compared to the numbers treated in clinical
trials.

One should note, however, that assessment of
safety when a drug is widely used is difficult because
patient and physician AE reports are ad hoc (sponta-
neous), and the extent of drug usage in the population
is usually unknown. Often, once a drug is available,
anecdotal evidence and spontaneous reports lead to
the perception that usage is associated with an unex-
pected safety problem. Such perception can lead to a
reanalysis of the clinical trial data, additional clini-
cal trials for safety, review of regulatory spontaneous
reporting databases, or active surveillance programs.

Various statistical approaches to the identification
of potential safety issues (risks) have been proposed
using routine databases such as the US food and
drug administration (FDA) spontaneous reporting
system. For example, Bayesian data mining has
been proposed to identify compounds or classes of
compounds with safety risks [4–7].

One should note that active postmarketing surveil-
lance can be planned a priori or when potential safety
issues are identified during drug development. For
example, active surveillance is often planned for vac-
cines that are generally given to healthy subjects, and
in many cases to children [8].

References

[1] Chow, S.-C. & Liu, J.-P. (2004). Safety assessment, in
Design and Analysis of Clinical Trials: Concepts and
Methodologies, 2nd Edition, Wiley-Interscience, New
York, p. 562–601.

[2] Ellenberg, S.S., Fleming, T.R. & DeMets, D.L. (2003).
Data monitoring Committees in Clinical Trials: A Practi-
cal Perspective, John Wiley & Sons, Chichster.

[3] DeMets, D.L., Furberg, C.D. & Friedman, L.M. (2005).
Data Monitoring in Clinical Trials: A Case Studies
Approach, Springer, New York.

[4] DuMouchel, W. (1999). Bayesian data mining in large
frequency tables with an application to the FDA spon-
taneous reporting system, The American Statistician 53,
177–190.

[5] O’Neill, R.T. & Szarfman, A. (1999). Bayesian data
mining in large frequency tables with an application to

the FDA spontaneous reporting system: discussion, The
American Statistician 53, 190–196.

[6] Louis, T. & Shen, W. (1999). Bayesian data mining in
large frequency tables with an application to the FDA
spontaneous reporting system: discussion, The American
Statistician 53, 196–198.

[7] Madigan, D. (1999). Bayesian data mining in large fre-
quency tables with an application to the FDA spontaneous
reporting system: discussion, The American Statistician
53, 198–200.

[8] Iskander, J.K., Miller, E.R., Pless, R.P. & Chen, R.T.
(2004). Vaccine Safety Postmarketing Surveillance: the
Vaccine Adverse Event Reporting System, Centers for
Disease Control and Prevention, Department of Health
and Human Services. Document 130012.

JUDITH D. GOLDBERG AND BENJAMIN

LEVINSON

Safety Pyramid see Near-Miss
Management: A Participative
Approach to Improving System
Reliability

Sampling and Inspection
for Monitoring Threats to
Homeland Security

Since the events of September 11, 2001, there has
been increased emphasis on monitoring and surveil-
lance to detect and prevent further terrorist attacks.
While significant resources have been devoted to the
mechanics of screening (e.g., improved X-ray equip-
ment, chemical “sniffers”), considerably less attention
has been paid to quantifying the efficacy of these
surveillance programs.

Given the high volumes of passengers, containers,
mail items, and various other inter and intraconti-
nental “movements” an important consideration is
the identification of a level of inspection that bal-
ances cost, inconvenience, detection success, and
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probability of “false triggering”. From a statistical
perspective, the answer is partly provided by the the-
ory and methods of statistical process control (SPC)
and elementary probability theory. However, bio-
surveillance, syndromic surveillance (see Syndromic
Surveillance), and counterterrorism surveillance (see
Managing Infrastructure Reliability, Safety, and
Security; Game Theoretic Methods; Public Health
Surveillance) are fundamentally different from mon-
itoring activities for quality assurance in an indus-
trial manufacturing process. Unlike the industrial set-
ting, where there is generally good information on
the performance of the manufacturing process (e.g.,
percent defective, proportion of nonconforming or
“out-of-spec” items), monitoring in the context of
bio/homeland security is characterized by extreme
uncertainty. For example, because of the nefarious
activities of terrorist organizations, security and intel-
ligence organizations do not always know what it is
they are looking for. As terrorists become increas-
ingly sophisticated in their modes of attack, our
uncertainty in both the likelihood of an attack and
which sentinels to monitor increases. Furthermore,
considerations of cost and logistics mean that we
could never hope to reduce the likelihood or prob-
abilities of such events to zero.

Given both these constraints and uncertainties, one
is thus faced with the problem of how best to sample
and inspect objects that potentially represent a threat
to homeland security ([1] and references therein).
These objects could be, for example, containers
entering shipping ports with concealed threats such
as biological agents, radioactive material or weapons
[2]; water reservoirs with threats of contamination; or
aircraft with bombs and/or terrorists on board.

Various techniques can be used to model risks and
uncertainty [3–5] associated with homeland security,
including classical max–min theories, worst-case sce-
narios (see Premium Calculation and Insurance
Pricing; Risk Measures and Economic Capital for
(Re)insurers), expert opinion (see Risk in Credit
Granting and Lending Decisions: Credit Scoring;
Operational Risk Modeling; Reliability Demon-
stration), and Bayesian [6] methods (see Repair,
Inspection, and Replacement Models; Imprecise
Reliability; Lifetime Models and Risk Assessment;
Bayesian Statistics in Quantitative Risk Assess-
ment). More recently, Information Gap decision the-
ory has been applied to monitoring for homeland
security [1, 7, 8].

We present here a simple model for sampling
and inspecting generic “objects” to detect threats to
homeland security. The model yields rules of thumb
that could be used by decision makers to set (upper)
limits on the number of objects to be inspected for
a given or desired level of risk, or to estimate levels
or limitations to risk as a function of the number of
objects inspected. The approach can be generalized
in various ways, for example, to take account of
imperfect detection rates [9] and several monitoring
protocols [10] when the underlying probabilities of
threats are subject to info-gap uncertainty.

A Model for Sampling and Inspection

Suppose that there are N objects entering an inspec-
tion point (e.g., a container port) over a time period
of t units (e.g., t weeks), and that n of these objects
are sampled and inspected for a particular threat T .

Define p to be the probability that an object
contains a T and θ to be the probability that a T

is detected if one is present. Assuming that there
are no clustering effects or serial correlations, the
probability that precisely k of those objects inspected
contain a T and are detected, and that the remaining
N − k objects contain no T is (p θ)k(1 − p)N−k .
Multiplying this expression by

(
n

k

)
, the number of

ways of choosing k from n, and summing over k =
0, 1, . . . , n gives an expression for the probability that
no T passes undetected over some time period t . The
compliment of this probability, viz,

PN(n, t) = 1 − [1 − p(1 − θ)]n [1 − p]N−n (1)

is then the probability that at least one T passes
through the inspection point undetected in time t .

Ideally, one would like to minimize PN(n, t),
which is easily seen from equation (1) to occur when
n = N , i.e., when every object is inspected – which
is obvious, although not achievable in practice. Fur-
thermore, since N and n are increasing functions
of time t , it follows from equation (1) that PN(n, t)

approaches unity for large t except when θ = 1 and
n = N . In other words, regardless of the precise val-
ues of p, θ, n, and N (except θ = 1 and n = N ), at
least one threat T will eventually pass through the
inspection point undetected. To limit risks to home-
land security, for example, by imposing a (small)
upper bound on PN(n, t), it is thus clear that one must



1602 Sampling and Inspection for Monitoring Threats

impose limits on import volumes (N) over specified
time periods (t). For example, if we require

PN(n, t) ≤ πc � 1 (2)

with πc some specified small number, we deduce
from equations (1) and (2), by rearranging equa-
tion (1), and taking logarithms that

n log

(
1 + pθ

1 − p

)
+ N log(1 − p) ≥ log(1 − πc)

(3)

Assuming p � 1 (and πc � 1), we can use
the linear approximation log(1 + x) ≈ x(|x| � 1) to
rewrite equation (3) as

N ≤ πc

p(1 − f θ)
(4)

where

f = n

N
(5)

is the inspection fraction which we assume, for
illustrative purposes, to be a constant.

It follows from equation (4) that the import vol-
ume has a finite upper bound except, as noted, when
f = θ = 1. In practice, of course, θ < 1 so that
regardless of the precise values of πc, p, θ , and f ,
equation (4) implies that limits must be imposed on
import volumes if one wishes to reduce the chance
of threats passing inspection points undetected [2]. It
is also clear from equation (4) that if one wishes to
increase the upper limit on N for given πc, or equiv-
alently, decrease the lower limit on πc for given N ,
one should choose the largest possible value of the
inspection fraction f in equation (5) that is consistent
with economic and other constraints. The problem, of
course, is that precise values for these limits depend
on p and θ which are themselves unknown and
uncertain. Nevertheless, equation (4) provides a sim-
ple rule of thumb that decision makers could use in
practice, using, for example, what-if or worst-case
scenario estimates for p and θ .

As an example, suppose that economic constraints
limit inspection fractions to 75%, and worst-case esti-
mates are p = 10−4 and θ = 2/3. For this scenario,
equation (4) gives

N ≤ ∼2πc × 10+4 (6)

Thus, if we require πc = 10−2, say, then equa-
tion (6) implies N ≤ 200; this presumably would
impose severe restrictions on the (unit) time period
over which one satisfies the likelihood constraint
of equation (2). Similarly, if say, 1000 objects pass
through an inspection point every month, the condi-
tion imposed by equation (2) is only achievable over
a 2-month period (N = 2000) when πc ≥ 1/10. In
other words, in this scenario over a 2-month time
frame, one can only be assured that there is not more
than a 1 in 10 chance of at least one threat passing
undetected.

Discussion

In this article, we have presented a simple model
for sampling and inspection of objects for threats to
homeland security. An important general conclusion
is that unless one inspects every object entering an
inspection point, and unless one has perfect detection
rates, at least one threat will eventually pass through
the inspection point undetected. We thus need to
impose limits on import volumes and periods to
limit the chances of threats passing undetected. The
simple model presented here can be generalized and
extended in various ways by using info-gap decision
theory [7] to model uncertainties in the underlying
probabilities of threats being present and detected
in import objects [1]. In info-gap terminology, the
inequality represented by equation (2) is only one
of many possible performance requirements that
decision makers may consider in arriving at so-
called robust-optimal solutions [1] in which there
are trade-offs between desired levels of performance
and immunity to uncertainty [7]. Generalized info-
gap models for homeland security are the subject of
ongoing research [9, 10].
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Scenario Simulation
Method for Risk
Management

In financial risk management, two types of risk
measurements are commonly used. The first type
measures the sensitivities of portfolio value to some
particular market variables. Usually, a portfolio’s
risk profile can be described by a large number of
those sensitivities. Examples include delta, gamma,
and vega (see Risk-Neutral Pricing: Importance
and Relevance; Weather Derivatives; Default Risk;
Statistical Arbitrage) in options portfolios, or dura-
tion and convexity (see Asset–Liability Manage-
ment for Life Insurers) in bond portfolios.a The
second type is more comprehensive as it calcu-
lates the probability distribution of the portfolio

value at a given horizon. This then provides com-
mon risk measures that summarize the portfolio
risk, such as the widely used value at risk (VaR)
(see Risk Measures and Economic Capital for
(Re)insurers; Credit Scoring via Altman Z-Score;
Compliance with Treatment Allocation), defined as
the maximum loss from an adverse market move-
ment with a specified probability over a period of
time.

Among the commonly applied methods to esti-
mate VaR, the simplest is “delta approximation” (see
Simulation in Risk Management). The method,
however, critically depends on two assumptions:
the normality assumption of portfolio value, and
the linearity assumption of the relationship between
transactions’ prices and market variables. For most
portfolios, especially for portfolios with options
and/or embedded options (see Options and Guaran-
tees in Life Insurance; From Basel II to Solvency
II – Risk Management in the Insurance Sector),
Monte Carlo simulation (see Simulation in Risk
Management; Structured Products and Hybrid
Securities; Reliability Optimization; Uncertainty
Analysis and Dependence Modeling) is a more
appropriate method. The difficulty with the Monte
Carlo approach is its computational burden. To obtain
a reliable estimate, the sample size has to be large.
Since each sample requires a repricing of the entire
portfolio, the required large sample size often makes
the Monte Carlo approach impractical.

The scenario simulation method (see Scenario-
Based Risk Management and Simulation Opti-
mization) described here is a computationally
efficient alternative to conventional Monte Carlo
for multicurrency fixed-income portfolios. Follow-
ing [1], the model approximates a multidimensional
lognormal distribution of interest rates and exchange
rates by a multinomial distribution of key factors.
While it allows very large samples of correlated
yield-curve (see Structured Products and Hybrid
Securities; Credit Migration Matrices) joint sce-
narios, the number of scenarios in each currency is
limited, which implies that the number of portfolio
evaluations is limited.

Scenario simulation provides the entire distribu-
tion of future portfolio returns (see Figures 6 and 7).
From this, not only VaR, but standard deviation and
other measures of risk, such as the “coherent mea-
sures of risk” of Artzner et al. [2], can be computed.
The scenario simulation model can be applied in


