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CHAPTER IV

CALIBRATION IN A NON-STATIONARY FIELD

4.1 INTRODUCTION

In this chapter we examine the problem of statistical calibration
in a non-stationary field. A linear statistical model of the fornm
V = WB + £ is assumed to exist at each of a number of locationms.
Furthermore, the vector of parameters, S at a particular location X is
assumed to be given by the model B = AX , where A is a matrix of
deterministic scalars. Given V,W data we could estimate @ at each
location via OLS. The resulting collection of 8's could then be used to
similarly estimate A . An alternative to this 'two-stage regression'
approach is to determine that A which minimizes an appropriate criterion
such as (V-G)T(V—G). Thevdetails of this latter method are given and it
is shown to be equivalent to the two-stage regression approach in the
case of a single location. The method is then extended to cater for the
case of multiple sampling locations.

We commence by first solving the necessary equations for the case
where it is assumed that observations between locations are independent
and then investigate the case where the covariance structure between
locations is taken into consideration using the Seemingly Unrelated
Regression (SUR) procedures discussed in the previous chapter. The

computations are illustrated with the use of an example.
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4.2 DEFINITIONS AND NOMENCLATURE

Consider a random field in which we measure at some location X,
V(X) and W(X). Here V(X) is a random function and W(X) is deterministic.
For example, V(X) might be a neutron-probe reading (count) at position X
(X possibly three dimensional) and W(X) is the water content at X. Thus,
both V and W vary with respect to X and ,at least initially, we will
assume W does so in a determiﬁistic way.

The mean, cross-covariance, and variance functions are respectively

defined to be :

#(X) = EIV(X)] (4.1)
B

C(x.x') = IV(X)-p(x)]{V(X')—p(x')l] (4.2)

€(x.x) =F [V(X)~p(X)]2] = g2(X) (4.3)

At a given location X, we assume the following linear model :

V(X) = W(X)BX) + £(X) (4.4)

where
W(X) is an (n X p) matrix
B(X) is a (p x 1) vector

V¥(X) is an (n x 1) vector
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and
El&(X)] =0 Var[£(X)] = ¢2(X) (4.5)

Furthermore, we assume that the process is non-stationary and that B(X)

varies linearly with X. Thus, if we let dim(X) = r~1 then
B(X) = AX (4.6)

where A is a (p x ») matrix of (unknown) constants and X is the (r x 1)
position vector. Note that X has been augmented with the additional row
containing the element 1 which corresponds to a constant term in the
model given by equation (4.6).

In this chapter we are concerned with the following problem : Given
sample data for V(X) and W(X) at known locations X how do we estimate
A?

We consider two approaches. In the first case we perform a 2-stage
OLS regression to determine the estimate of A whilst the second method
estimates A in a more direct manner by performing a least-squares fit
with respect to the matrix A. It will be subsequently shown that the two
approaches yield the same estimator in the case of a single location.
When there are multiple sampling locations it will be demonstrated that

the latter method is superior.
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4.3 ESTIMATION PROCEDURES FOR INDEPENDENT LOCATIONS

4.3.1_TWO -STAGE REGRESSION.

For convenience we will drop the explicit reference to the position

vector X, it being understood hereon that V=V(X) ; W=W(X) ; A=@(X) ; and

E=£(X).

Our model is thus
V=Wg+ &

Given sample data for V and W we may estimate 8 in the usual manner

as
g=ww Wy (4.7)

This corresponds to the first stage of the estimation procedure. Next we

Y -~

assume that 8 = AX by virtue of equation (4.6). Again, given data for S

from stage 1 and values for X we find the OLS estimator i is derived as

follows :

-~ a

B8
W WY (4.8)

B

4$
%

and thus
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A= WYX (4.9)

where X is the generalized inverse of X.

4.3.2 LEAST-SQUARES WITH RESPECT TO A

In this case we seek that estimate of A (call it R) which minimizes
A2 ~ o~ . .
$(V-V)  where V = WAX and the summation is taken over all observations

at all locationms.

[v-v1 " [v-V]

Let Q

[V - WAX] [V - WAX]

V'V - 2V'WAX + X'A W WAX

Now,

=0 3 O [vTv -2V WAX + X AW WAX ] =0
JA

&

s -2 0 [v’wnx] +

v [x*n*w*wnx] = 0.
JA

d
A

Now, [v*wax] =WVx

& <

{Theorem 10.8.3, p353 Graybill, 1983.)

Next, [x’a*w’wax] = [(wnx) T (WAX) ] )

&
| =
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Writing the kernel of the last expression in scalar form we have :

n
(WAX) " (WAX) =) q [

s=1 v

Differentiating equation (4.10) with respect to aij we find :

9 {(wu)’(ux)] = 2x"® W'WAX
JA
where the Kronecker-product in equation (4.11) is defined as

2[X(W WAX , xoW WAX , . . . xVHTHAX]

Thus, returning to fE = 0 we find :

=0 3 -2WVX +2{®WWAX =0

> &

3 X'®WWAX = W VX'
taking transposes
3 XOXAWNW=XVV

multiply both sides by x

3 FXOXAWWN=XXVW

PhD Dissertation
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(4.10)

(4.11)
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but X'X is a scalar and thus cancels on both sides of the previous

expression leaving :
XA W =VV (4.12)

Now W is (n x p), n)>p and therefore the matrix (W'W) is full rank. Thus

equation (4.12) becomes :

-1 -1
XATWWWW T = VWY
-1
3 XA=VWWNW
taking transposes of both sides

-1
3 AX=(HW) WV (4.13)

Observe that equation (4.13) is exactly the same as equation (4.8)
obtained for the two-stage regression. We therefore arrive at the same

estimator , namely :
~ -1 -
R= W Wvx (4.14)

That the two procedures yield the same estimator is somewhat surprising.
Intuitively, one would have thought the two-stage approach to be less
efficient on the grounds that the values of B used in the second stage

are not actual values but instead only least-squares estimates and that
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the error associated with using ;9 would have in some way 'compounded’ in
the second stage. As it turns out, this intuition is correct in the case
of multiple sampling locations.

If equation (4.14) were to be used in the case where we had
observations at more than one location we would end up estimating a
separate A matrix for each location with no guarantee that these would
be the same. This situation would defeat the object of the exercise
since what we require is a single matrix A that in some way 'best’
represents the data as a whole. Once having obtained this matrix (or its
estimate) we are then in a position to determine the model parameters
for the regression of V on W at some new location wilhout teking any
measurements on either. This is a most attractive facility since all
that we are required to know for any future prediction (or calibration)
is the position vector X. We now consider how this estimation of a

single A matrix using all the data may be achieved.

4.3.3 THE CASE OF MULTIPLE LOCATIONS

We now assume there are k locations and at each location we have n

observations on both W and V. Thus :

\A
Vo

vV =1 - where Vi is {n x 1).
(knx1) -
Vi

and
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v, =W, ﬁ& where ﬁﬁ

(nx1) (nxp) (pxl)
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(px1) ({(pxv) (rxl1)

and
WiAX,
- WoAXo
vV = | -——--
V AX,
As before, let Q = [V—G]T[V-G] where
Vi I wiax, Vi - WAX;
R Vs WoAX, Vo - WoAXs
V-vl = | == | = [ === | = | ==
and thus :
k

~T ~ T
v-v] [v-V] = 2 (V, - W.AX)(V, - W.AX))

i=t

k
T
Hence Q = _2 Qi where Qi = (Vi - Wilxi) (Vi - winxi) .

i=1

We consider again the two approaches : (i) 2-stage regression and

(ii) minimization of Q with respect to the matrix A .

4.3.3.1 Two-stage regression

The solution for the 2-stage regression is simple

when the number
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of locations is > » (recall,the dimension of the field is r»-1). In this |

case X has a right-inverse and so the least-squares solution for matrix

A is :
~ -1 . -1
E= 0w wvx(xx) (4.15)

4.3.3.2 Least-squares with respect to A

Differentiating Q with respect to the matrix A we have :

k
R0 =>(L _"_Q_iﬂ=o
'=1(?A

A
Now,
Ri - _ogTy.x7 + 2%7® WW,AX, = 0
an 111 1 11 1
and therefore
i k
T T T T
= 0 3 .Xl([xia WWAX, - WIV.X E] (4.16)
1=

Since there is no closed-form solution for equation (4.16) we must solve

numerically. This is readily achieved using the Newton-Raphson method as

suggested below. g
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Newton-Raphson solution.

Let g(A) = Z ([xiTe w;wihxi - wiTvixiT ﬂ
i=1

where { g(A) is a (p x V) matrix}

Then the iterative procedure is written as :

-1
vec(A®*!) = vec(a™) - [ vV vec[g(Am)]] vec[g(A™)] (4.17)

4.4 ESTIMATION PROCEDURES FOR CORRELATED LOCATIONS

We again consider the case of determining the matrix A in the
system = AX ; V = W@ + £ , where V is an (nxl) vector of dependent
variable values, W is a (nxp) matrix of independent variable values, S
is a (px1l) parameter vector for location X (1x1).

The methods of the previous sections implicitly assumed that
observations between locations were independent. In many applications
this will not be the case - particularly in a geostatistical context
where some or all of the locations are within a zone of influence of
each other. We now extend earlier results to allow for this

between-location covariance effect.
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4.4.1 SEEMINGLY UNRELATED REGRESSION AND GENERALIZED LEAST-SQUARES

For the ith. location :

v, =W, ﬁ% + fi (4.18)
(nx1) (nxp) (px1) (nx1)

where

ﬁ% = A X (4.19)

(px1) {(pxv) (vx1)

A convenient way to write this system of equations is :

Vi Wi B &
Vo i | W Bl 4+ | & (4.20)
vy Wy By 3
or
v=2T+ ¢ (4.21)
vhere

V is (knx1) , Z is (knxkp) ,T is (kpxl), and £ is (knxl).

Furthermore, we assume [F[£;] = 0 and the covariance matrix of the

joint disturbance vector is given by

Elé€1 =201 =4, (4.22)
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where
%11 %12 o+ - 2%k
Y= Oy Tgg =« + +Ogk (4.23)

. - .
- .

Oy Tky - -+ - Tkk

and 0;; is the covariance between V in location i and V in location j.
If we regard the n observations in Vi as representing a different

point in time, then the covariance assumption in equation (4.22) implies

that the disturbances in different equations are correlated at a given

point in time but are not correlated over time. In econometric theory

this is known as a contemporaneous correlation.
4.4.1.1 Estimation

When the system represented by equation (4.20) is viewed as the
single equation (4.21), we can estimate T and hence all the ﬁ& via
generalized least squares (GLS). If Z is of rank kp and Y is known and

of rank k, the GLS estimator exists and is given by :
v LS IR BN g
T=(Z9¢ 2) 2¢ V (4.24)

Within the class of all estimators that are unbiased and linear
functions of V, this estimator is minimum variance and, if V is normally
distributed, it is the maximum likelihood estimator and is minimum
variance within the «class of all unbiased estimators (Judge

et.al.1980,p246).
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Furthermore :

BT =T
and

'agTy e In)z]'l

Ef-nd-n1=-c"¢'n”

If interest centers only the ith equation and only estimators of Vi

are to be considered, then the OLS estimator ﬁi = (W;Vi)—lwirvi is the
minimum variance linear unbiased estimator. However we can improve on
this estimator by considering a wider class, namely linear unbiased
estimators that are a function of V. Within this class ﬁ&, the ith
vector component of T ., 1s better than ﬁi because it uses information on
explénatory variables that are included in the system but are excluded

th equation. Zellner (1962) indicates that if g5 = 0 for all

from the i
i#]jorif Wy = Wy = ... W, the estimators Bi and £§ will be identical,
and so there will be no gain in efficiency. Also, the efficiency gain
tends to be higher when the explanatory variables in different equations
are not highly correlated but the disturbance terms corresponding to
different equations are highly correlated.

In most applications ¥ is unknown, and so the estimator i cannot be

employed. However, one can utilize the estimated generalized least

squares (EGLS) estimator :

A | -1 1, 2=1
T=-1z'(Y emnzl  z (¥ env (4.25)
where the estimator ﬁ is based on the OLS residuals éi = Vi - Wiﬂi and

has elements given by
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T
R fifi .
% = & ' i,ij=1,2,. . .k (4.26)

4.4.1.2 Least squares estimation of matrix A

Single location case

We now examine the problem of least squares estimation of matrix A

appearing in equation (4.19). Consider a single location i, and thus

where A is a (pxyr) matrix of unknown constants and Xi is a (wxl)

position vector. Our objective is to find that A which minimizes
= (v,-V) ¢ (v, -V)
Q= 1V-v iV

(in this case ¥ represents the covariance between observations within a
single location).

Now,

T ,~1
(vi—wiaxi) y (Vi-UiAXi)

©
H

T ,~1 ~1 Ty Ty T
Vi ¥ Vi - ZVi¢ ViAXi + XiA Wiﬁ WiAXi (4.27)

Differentiating equation (4.27) with respect to the matrix A and setting

the result equal to zero we have :
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xR _ /] r ,~1 P .1, 1 _
B=02 % [v,'¥ 'V, - WAx + XA ¥ winxi] =0

Now,

and

gi [x;ATwiqb"wiAxi] = gi [(wiAxi)Tqb"(wiaxi)]

T T ,~1
= 2xi ® Hi¢ wiaxi
and therefore

Q _ oy Tyt T T T ,~1 _

v 03 Zwi¢ ViXi +2Xi ® Wi¢ UiAXi = 0
T T -1 T ,~1 T

2 Xi ® Wi¢ WiAXi = Viqﬁ vixi

Taking transposes :

T T, T ,~

1 T ,~1

Multiplying both sides by > S

T T, T ,~1 Te Ty !
AN = XX VYN

T
? xixi ®X 17171

T T,..T,~1 T ,~1 . T . :
* XA (Wit Wi) = Vit “i (since XX, is scalar)
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Now wi is full rank and hence :

2" = wiy v e e

i® T i i i
Finally, taking transposes we obtain:
T,~1 -1 1 -1
s Y = Wiy ) W, (4.28)
i i i i i *

Notice that , in the case of a single location,the least squares
solution given by equation (4.28) is the same as the GLS estimator in

equation (4.24) (Z in the case of a single location reduces to Hi).

Multiple locationms.

For the case where we have more than one location we may express the

quantity Q as follows :
0=[V-2vecX)] ¢ ' [V -2 vec(AX)] (4.29)

where V and Z are respectively (knxl) and (knxkp) matrices. A is (pxv)
and X is (vxk). Previously in the case of multiple locations we were
3 th
able to express Q as 2 Qi where Qi was the contribution from the i
4
K ¥ doi
] — 1=
location and thus y 0 3 2 yY 0.

ist
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However, this is no longer possible due to the presence of ¢ in
equation (4.29) and we are forced to consider (4.29) a whole. The
existence of a closed form solution to equation (4.29) has not been
established at this time. As a practical alternative we can solve

equation (4.29) numerically using a Newton-Raphson technique.
The estimate of A at the (m+1)th step is given as :
-1
A = atm _ [P20(a)] V Q(R) (4.30)

where V2Q(A) is the Hessian of Q evaluated at the current vec(A) and
Vo(a) is the gradient function of Q evaluated at vec(a).

The iterative procedure described by equation (4.30) has been
programmed using the matrix-based language GAUSS. A listing of the
source code is given in Appendix L.

It should be pointed out that the process for determining the least
squares solution for A using the EGLS approach is very computationally
intensive since the covariance matrix @ is updated at the end of the
Newton-Raphson iterations and the cycle repeated using this revised & .
The process terminates when the norm of the difference between tvwo

successive approximations to A differ by less than some prescribed

ammount.




Fox, D.R. Statistical Calibration: Theory and Applications PhD Dissertation

184

4.4.1.3 Two_stage reqgression approach

With k locations and n observations per location in a r-dimensional
field we can derive an estimate for A which parallels the so-called

two-stage regression procedure previously developed. This estimate is

given in closed form as :

t-2'6' enz 2" ¢ e v xx)! (4.31)

provided v < k.

We now illustrate the computations associated with both approaches

with the use of an example.

4.5 AN EXAMPLE

The data used for the purpose of illustration of the techniques
discussed in this chapter were generated according to the following

schene.

At selected locations in a two-~dimensional field compute values of

the independent variables Wy and Wo as follows :

2 2
3exp{—§[§l + %2]}

W1

and

wy = 2expi-[x, + x,1/10}
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The parameter values are computed as

L3

By(X) = -2 + 3x, + 4x,
B, (X) = 5 - x +2x,
By(X) = 2+ x; - 3%,

and thus

In table 23 below we have used 5 locations with 6 observations at
each location. The values of W, and Wy at a given location were randomly
generated about the mean value given by the expressions above. Two sets
of V data are also given. The first set (Vi) are those values of V that
satisfy V = W@ exactly at each location while the second set (V) were

obtained by adding to the V; values a normally distributed {(0,1) randonm

error.

4.5.1 ANALYSIS OF V; DATA

Using the V; data in the table as dependent we estimate the A

matrix using the two approaches as follows :
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Table 23. Sample data for non-stationary calibration.

Xy Xy Wy W \A Vo
1.0 1.0 2.439 1.701 19.6340 20.5147
1.0 1.0 2.419 1.733 19.5140 19.3308
1.0 1.0 2.343 1.595 19.0580 18.5321
1.0 1.0 2.409 1.667 19.4540 18.9472
1.0 1.0 2.297 1.638 18.7820 19.34617
1.0 1.0 2.456 1.807 19.7360 19.0564
1.5 -0.7 2.140 1.904 14.8564 16.4618
1.5 -0.7 2.156 1.884 14.7780 14.4764
1.5 -0.7 2.202 1.833 14.5890 13.9134
1.5 -0.7 2.195 1.717 13.9247 14.3847
1.5 -0.7 2.145 1.705 13.7525 13.8574
1.5 -0.17 2.194 1.867 14.7626 16.0857

-2.3 1.8 1.779 2.024 6.1543 4.9149
-2.3 1.8 1.067 2.096 -2.0169 -2.5244
-2.3 1.8 1.092 2.105 -1.7957 -1.9037
-2.3 1.8 1.103 2.129 -1.8126 -2.8437
-2.3 1.8 1.138 2.050 -0.9808 -1.5414
-2.3 1.8 1.136 2.056 -1.0368 0.0647
-1.4 -1.2 2.042 2.713 8.5626 8.8700
-1.4 -1.2 2.005 2.651 8.1542 7.7663
-1.4 -1.2 2.003 2.514 7.5708 9.1219
-1.4 -1.2 2.080 2.628 8.3576 8.0765
-1.4 -1.2 2.014 2.654 8.2028 9.9138
~1.4 -1.2 2.052 2.609 8.1658 6.6364
0.9 2.1 1.768 1.488 18.7152 17.4071
0.9 2.1 1.775 1.479 18.8039 18.3699
0.9 2.1 1.743 1.463 18.5927 17.4336
0.9 2.1 1.790 1.478 18.9318 20.7829
0.9 2.1 1.781 1.478 18.8571 17.6514
0.9 2.1 1.751 1.588 18.2341 19.8053
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4.5.1.1 Two-stage regression

Using (equation 4.31) we obtain

-2 3 4
A= 5 -1 2
2 1 -3

which is in perfect agreement with the actual A matrix used to generate

the V; data.

4.5.1.2 Least squares with respect to A

Using equation (4.30) we obtain

-1.9996 3.0001 3.9997
4.9998 -1.0000 2.0001
2.0000 1.0000 -3.0000

A

Again, the estimate of A is in almost perfect agreement with the

actual A.

4.5.2 ANALYSIS OF Vo DATA

4.5.2.1.0L8 Analysis

The output below is from the GUASS program appearing in the Appendix L.
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DATA ENTRY

Enter drive and (optionally) a path for stored matrices : e:

o}

Do you want OLS estimation or GLS estimation (Type O or G)

Two-stage regression estimate of matrix A :

11.3359 -17.3812 -20.0568
-1.0255 4.6563 13.4781 (matrix Ay)

2.8953 6.6474 -1.1142

Strike a key when ready . . .

Enter tolerance for determining stopping criterion : ? le-6
Iteration 1.0000

16.7866
-1.3619
-6.4514
-4.6814

-0.2161

7.5284

3.1391

2.8161
-3.5875

Iteration 2.0000

19.6008
-0.5280
=-9.4370
-6.6670
-0.2688
8.6732
3.8456
2.5658
-3.1661

Convergence established at iteration 5.0000

Least squares estimate

Matrix A =

19.6000 -0.5280 -9.4365
-6.6666 -0.2689 8.6730 (matrix As)
3.8456 2.5658 -3.1661
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Will now compute the predicted values of dependent variable
using this A matrix . . .

Actual matrix of V data :

20.5147 16.4618 4.9149 8.8700 17.4071
19.3308 14.4764 -2.5244 7.7663 18.3699
18.5321  13.9134 -1.9037 9.1219  17.4336
18.9472  14.3847  -2.8437 8.0765 20.7829
19.3467 13.8574 -1.5414 9.9138 17.6514
19.0564 16.0857 0.0647 6.6364 19.8053

Matrix of predicted V values using A»

19.3935 16.1617 5.1456 8.5615 18.5595
19.4626  15.7533 -~2.2217 8.9281 18.6431
18.8827 14.6433 -2.0524 8.4062 18.2893
19.2310 13.5857 -2.1333 7.5825 18.8132
18.9423 14.1238 -1.1860 8.7900 18.7114
19.7670 15.0854 -1.2516 7.9731 18.3179

4.5.2.2 EGLS procedure

DATA ENTRY

=t

Enter drive and (optionally) a path for stored matrices : e:

Do you want OLS estimation or GLS estimation (Type O or G} : ¢
Are observations WITHIN a location independent (y/n) : y

Two-stage regression estimate of matrix A :
5.2807 4.0204 -12.0021
4.4922 0.6046 4.6958 (matrix Ag)
-0.0344 -0.0036 2.0038
Strike a key when ready . . .

Enter tolerance for determining stopping criterion : ? le-6

Convergence established at iteration 5.0000
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Matrix A =

7.3691 1.4302 2.2187
1.7679 3.0079 3.0224 (matrix RAg4)
-0.2485 -1.8380 -3.6782

Will now compute the predicted values of dependent variable
using this A matrix . . .

Strike a key when ready . . .

Actual matrix of V data :

20.5147 16.4618 4.9149 8.8700 17.4071
19.3308 14.4764 -2.5244 7.7663  18.3699
18.5321  13.9134 -1.9037 9.1219 17.4336
18.9472 14.3847 -2.8437 8.0765 20.7829
19.3467 13.8574 ~1.5414 9.9138 17.6514
19.0564 16.0857 0.0647 6.6364 19.8053

Estimated V values using matrix A, :

20.2321  16.0520 3.24217 8.5912 18.1242
19.8917 16.1273 2.8459 8.3979 18.2866
20.0945 16.3408 2.8293 7.4869 18.0943
20.1941 16.3616 2.7691 7.7877  18.4586
19.4879 16.1586 2.9880 8.3635 18.3612
19.7536 16.2928 2.9716 7.8296 16.9775

Do you want to continue iterating on psi matrix (y/n) : n
Execution stopped in line 356

4.5.3 CALIBRATING AT A FUTURE LOCATION

We now examine how well the various estimated A matrices from the
previous section "predict" the actual V data at a location which was not

used in the model fitting.
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Position G using matrix : v
Xy X9 Aq As Az Ay actual
2.0 -1.4 91.7878 28.0765 23.4553 14.7445 14.148
1.6 -2.3 88.2433  38.4083 22.4887 15.3834 14.582
1.8 1.4 76.9956 19.5034 19.7228 19.1832 18.289
SSE 14900.4 763.17 151.20 1.80

Based on the performance at the three selected test locations we
see that A,, A2, and Ag performed particularly poorly.The estimate of A

obtained using the EGLS approach performed substantially better than the

other three.





