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Environmental power analysis — a new perspective

David R. Fox*
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SUMMARY

Power analysis and sample-size determination are related tools that have recently gained popularity in the
environmental sciences. Their indiscriminate application, however, can lead to wildly misleading results. This is
particularly true in environmental monitoring and assessment, where the quality and nature of data is such that the
implicit assumptions underpinning power and sample-size calculations are difficult to justify. When the
assumptions are reasonably met these statistical techniques provide researchers with an important capability
for the allocation of scarce and expensive resources to detect putative impact or change. Conventional analyses are
predicated on a general linear model and normal distribution theory with statistical tests of environmental impact
couched in terms of changes in a population mean. While these are ‘optimal’ statistical tests (uniformly most
powerful), they nevertheless pose considerable practical difficulties for the researcher. Compounding this difficulty
is the subsequent analysis of the data and the impost of a decision framework that commences with an assumption
of ‘no effect’. This assumption is only discarded when the sample data indicate demonstrable evidence to the
contrary. The alternative (‘green’) view is that any anthropogenic activity has an impact on the environment and
therefore a more realistic initial position is to assume that the environment is already impacted. In this article we
examine these issues and provide a re-formulation of conventional mean-based hypotheses in terms of population
percentiles. Prior information or belief concerning the probability of exceeding a criterion is incorporated into the
power analysis using a Bayesian approach. Finally, a new statistic is introduced which attempts to balance the
overall power regardless of the decision framework adopted. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of power analysis (PA) and sample-size determination (SSD) to plan environmental studies
has become almost de facto practice among environmental researchers (Green, 1989, 1994; Peterman,
1990; Fairweather, 1991). The intention is clear: we wish to determine the amount of resource that is
required to confidently assert that an impact or change in environmental condition has occurred when
indeed this is the case. At the same time, we wish to protect ourselves from incorrectly reaching this
conclusion. The probabilities associated with these outcomes are respectively referred to as the power
and size (or level of significance) of the statistical test. The techniques are well known to statisticians,
although interestingly this group is perhaps less enthusiastic about the utility of PA and SSD than those
who routinely apply them. The reasons for this may in part be due to the fact that power and sample
size calculations are predicated on some reasonably strong statistical assumptions—assumptions that
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are often difficult to justify in practice. Mother nature, it seems, is an unwilling participant in designed
experimentation and studies to assess her health. Data obtained from environmental studies are
notorious for their paucity, non-normality, heterogeneous error structure, over-dispersion, and spatial—
temporal dependency.

The presence of one or more of these anomalies will affect both the power and size of the statistical
test. Data paucity will reduce statistical power. The non-normality issue is not as important as many
researchers would believe, and much of the effort in eliciting a suitable transformation of the data
is unwarranted. Serious departures from normality will have an unpredictable effect on any reported
p-value (Horton, 1978). The presence of heterogeneous error structure, over-dispersion, and spatial-
temporal dependency will generally invalidate the results of PA, SSD, and ANOVA analyses.

Notwithstanding these difficulties, power and sample-size analyses implicitly assume a statistical
model for the data. Assessment of the adequacy of this model is often overlooked or ignored once the
sample data have become available. Clearly, if the model and the assumptions on which the power
analysis has been based are incorrect, then any determination of sampling effort is likely to be
seriously flawed. Although it is possible in certain instances to derive power and sample size ‘rules’ or
formulae for non-normal cases (eg. inference for Poisson means), these techniques are less well known
and consequently not as frequently employed. The plethora of computer software for PA and SSD
(Thomas and Krebbs, 1997) for inference concerning means of normal distributions has only served to
cement the foundations of these techniques in environmental assessment.

More recently, the applicability of the statistical significance-testing paradigm for environmental
assessment has been called into question (McBride ef al., 1993; Johnson, 1999; Suter, 1996). These
concerns have also been echoed by Nelder (1999), who is highly critical of the myopic focus that has
resulted from a dependency on binary hypotheses, meaningless multiple comparison procedures and
an unhealthy obsession with p-values. Given this rising tide of discontent with significance testing, we
might feel inclined to abandon sample-size and power analyses altogether. However, while reform is
clearly indicated, we should not throw the statistical baby out with the bathwater. If performed with
due diligence, a mild degree of scepticism and appropriate attention to assumptions, power analysis,
and sample-size determinations give us some quantitative measure of the likely performance of
statistical tests and help focus our minds on the allocation of scarce resources. Rather than reject these
methods out of hand and in the absence of credible alternative strategies, this article attempts to
reconcile some of the philosophical and operational difficulties by developing a compromise frame-
work for significance testing.

The remainder of this article is structured as follows. In section 2 we discuss some of the conceptual
difficulties with the present hypothesis testing paradigm as it relates to environmental investigations
and establish the argument for a compromise or hybrid approach. A new statistic called the
‘environmental power’ (EP) is introduced and its theoretical development presented in Section 3
with an example illustrating its use given in Section 4. Section 5 establishes the nexus between the new
EP statistic and its conventional counterpart for sample-size determination and use in the planning of
environmental studies. Some additional properties of the EP statistic are discussed in Section 6 and
some indications for further work provided in Section 7.

2. A DECISION FRAMEWORK FOR ASSESSING ENVIRONMENTAL CONDITION

Consider the problem of determining whether or not some human activity has resulted in an
environmental impact (however defined). A fairly typical, if not standard, approach commences
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with the formulation of a hypothesis to be tested (this hypothesis translates the notion of ‘impact’ into
a statement about a parameter value) followed by the collection of sample data and concludes with a
decision about the true state of nature. The use of conventional statistical inference has forced
environmental scientists to adopt the frequentist’s dichotomous decision-making process where one is
forced to conclude that an impact has occurred or it hasn’t. The wisdom of this approach in an
environmental context is questionable. It could be argued that a more sensible strategy is afforded by
Bayesian methods, for example, which seek to refine prior belief in the light of new evidence and to
express the outcome as a probability distribution. An alternative view is that the binary decision-
making process should be replaced by improved methods to represent and model the spatial and
temporal extent of the quantity of interest. A product of this approach is typically some sort of map that
makes no attempt to classify the impact, but simply describes it. Those who view the map must then
ascribe to it their own subjective assessment of the ‘significance’ of what they see. Furthermore,
the notion of an ‘environmental control’ in BACI (before-after-control-impact) type assessments
(Underwood, 1990, 1991, 1994) may be regarded as an oxymoron. The difficulty is that by necessity
an environmental control has to be sufficiently far removed from a potentially impacted site that one
can no longer guarantee that the integrity of the underlying spatial-temporal processes have been
preserved. Additionally, while it may be possible to identify a site that has not been disturbed by the
impact under investigation, it is highly unlikely that it has not been disturbed by some other human
activity. Smith et al. (1993) discuss other issues in the context of BACI designs.

It is generally recognized that statistical significance and ecological significance are not exchange-
able concepts, although a proclamation of the latter is usually based on detection of the former.
Figure 1 shows some scenarios to illustrate the relationships between the two concepts.

Case I: The observed effect is not statistically significant, and the results are inconsistent with an
effect large enough to be ecologically significant.

Case 2: The observed effect is not statistically significant, although the results are consistent with
effects large enough to be ecologically significant.

Case 3: The observed effect is statistically significant but the results are not consistent with effects
which are large enough to be ecologically significant.

Case 4: The observed effect is statistically significant and the effect may or may not be large enough
to be ecologically significant.

Case 5: The observed effect is statistically significant and we can be confident that the effect is large
enough to be ecologically significant.

Zero fffect Important Effect
Case 1

Case 2 [ ]

Case 3

Case 4 | |
Case 5 Il_l

Figure 1. Confidence intervals for five different environmental scenarios.
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Notwithstanding the previously identified difficulties with environmental power analysis, there are
clear benefits in adopting a statistical approach to the planning of environmental studies. As noted by
Green (1994), Fairweather (1991) and others, the adoption of a statistical framework for inference
forces the researcher to provide a precise and explicit statement of null and alternative hypotheses.
Power analysis provides an additional ‘reality check’ by ensuring that the planned allocation of effort
is neither inadequate nor profligate. This notion of identifying a sampling and analysis regime that is
“fit for purpose’ is one that deserves more attention in the environmental sciences. Yet there are
problems with the application of Neyman—Pearson-type decision-making processes. The ANOVA
framework devised by Fisher and Yates some 60 years ago at Rothamstead Experimental station in the
U.K. was a triumph of statistical ingenuity. The methodology is perhaps the single most recognized,
used, and abused of all statistical tools. When applied correctly and the attendant assumptions have
been satisfied, ANOVA methods work superbly. Under these conditions ANOVA is an optimal
(uniformly most powerful) statistical procedure. This single technique has, over the years, demon-
strated its utility in applications as diverse as psychology, medicine, epidemiology, physics, nutrition,
pharmacology, education, business, and marketing. It is not surprising therefore to see analysis of
variance adopted as an almost de facto standard for environmental monitoring and assessment. While
mean-based inference is appropriate in many instances, it is less likely to be relevant to environmental
studies. There are parallels between environmental protection and engineering design and construc-
tion. Designers of dams, bridges, and other hydrologic structures are not so much interested in average
conditions as they are with extremes (eg. the maximum load or the 1-in-100 year flood). Environmental
scientists have a similar interest in extrema—high rainfall events, low river flows, high contaminant
concentrations, low abundance, and/or diversity of biological populations. Thus a more appropriate
formulation of statistical hypotheses would be couched in terms of the percentiles of a distribution
rather than its mean.

The environmental scientist is perhaps also uncomfortable with other aspects of conventional
statistical hypothesis testing procedures, in particular, the specification of a null hypothesis that
invariably assumes no impact or change has occurred. This hypothesis is only rejected when the
sample evidence is incontrovertible in its support for the alternative hypothesis. While this
formulation of the problem and testing strategy appeal to our notion of ‘innocent until proven
guilty’ it is somewhat at variance with the spirit of ‘environmental protection’ and the precautionary
principle. Indeed, the more environmentally ‘green’ among us would argue that any anthropogenic
activity is not without an environmental effect and therefore we should adopt as our initial premise a
statement that the impact has been deleterious. The onus of environmental sampling is thus to
demonstrate beyond reasonable doubt the veracity of the complimentary hypothesis—that the impact is
not deleterious. A mere re-jigging of the size and power of the statistical test does not extinguish
concerns over the choice of an appropriate null hypothesis. The roles of power and level of
significance cannot simply be reversed to accommodate a re-labelling of the null and alternative
hypotheses. Thus we can identify two distinct paradigms or statistical frameworks for environmental
hypothesis testing (Table 1).

Table 1. Two frameworks for environmental hypothesis testing

‘Green’ decision framework (£2;) ‘Brown’ decision framework (£2,)
Hy: impact is deleterious Ho: no deleterious impact
H;: impact is not deleterious H;: deleterious impact
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Table 2. Identification of various error types under different decision frameworks

True state of nature

Decision framework Action Impact not deleterious Impact is deleterious
Q0 Accept Hy b

Reject Hy a-pay o
973 Accept Hy )

Reject Hy o 1—=py

Some basic relationships between level of significance under the ‘green’ and ‘brown’ formulations of
the statistical hypotheses are illustrated in Table 2.

The as and fs in Table 2 are probabilities of committing the indicated error. An environmentally
responsible monitoring program would seek to minimize either o; or f, depending on the analysis
framework adopted. However, we acknowledge that, a priori, either decision framework may be
adopted depending on the experimenter’s preferences and bias. Equally, it is often the case where
decision framework €, is adopted by the notional ‘polluter’ only to have the outcomes assessed by an
agency whose philosophical stance on environmental protection is best reflected by decision frame-
work €2;. Thus, in an attempt to reconcile these differences we might suggest that tests be designed to
minimize the sum o; + f,.

In the next section we provide details of a framework for environmental power analysis that is
couched in terms of population percentiles and which endeavours to accommodate the dual nature of
the decision-making framework. A useful by-product of this approach is that, unlike mean-based
inference, estimates of variance parameters are not required. Although this is not a new idea (see, for
example, Guenther, 1977), its application as a tool for environmental assessment has not been
previously developed.

3. ENVIRONMENTAL POWER ANALYSIS DEFINED

Let © be the true (population) proportion of the population that is numerically less than some
threshold or criterion 7. For some variable, X, of interest, define the pth percentile, él, as that value of X
for which. P(X < £,) = p. Furthermore, it will be assumed that environmental compliance is achieved
when ¢, < 7. Our null and alternative hypotheses under each of the decision frameworks €2; and €2,
have been identified in the previous section.

We first develop key results under decision framework £2,. An extension to €); is then straight-
forward.

The null and alternative hypotheses under €2, can be re-written in terms of &,

Holép:‘f
Hll(fp>‘f

We treat 0 as a hyper-parameter having some pdf gg (0) (e.g. a beta distribution).
It is further assumed that the conditional distribution X | 0 is N(y, 52).
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The hypotheses of Equation (1) can be equivalently expressed in terms of the population
mean, [

Hy: u=py 0=p
Hy:op > py

(2)
where
Hg = T — 200 (3)

and zy is the quantile from a unit normal distribution for probability 6.
Now an a-level test of the hypothesis in Equation (2) rejects Hy if

X>r+@—z,,0 (4)

Vn
where X is the mean of a sample of size n from the population of X values.
The conditional power of this test is

. 2,0
PX>I+%—zp0|uz,u0 (5)

Equation (5) can be alternatively written as
PIZ >z = /n(zp — 20)] = (V2 | © = 0) (6)

The unconditional power of the test (¥;) is given by the expectation Eg[¥; | 0]. Thus,
va= [ (8] 0)ga(0)00 7)
—00

Under decision framework €2; the unconditional power W, is obtained using Equation (7) with
appropriate substitution of subscripts and where

(V1 ]©=0) =P[Z >z, +Vn(z — 2)) (8)

Observe that neither Equation (6) nor Equation (8) require the specification of o2, the population
variance. This is a very attractive feature and removes a source of uncertainty in the power
calculations.

A new statistic called the environmental power (EP) is introduced in an attempt to acknowledge the
different approaches to power analysis as represented by frameworks €2; and €2,.
The EP statistic is defined as follows:

U1(0)%,(0)
2

k(@) =1-— 9)
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where « is the (common) level of significance used for both test regimes. To understand how x works
consider the following scenarios.

Case l: O0=p

In this case the true proportion of compliances is as specified and x = 0, implying that there is no basis
for arguing either way as to the deleterious nature of the impact.

Case2: 0>p

In this case the true proportion of compliances is greater than that specified and ¥ (0) will be
relatively large and W, () small. In the extreme as 6§ — 1, ¥;(6) — 1 and ¥,(0) — 1, and thus
k(6) — 1. Under these circumstances «(6) will approach unity more rapidly than W;(8), which is
appropriate. Under the decision framework €2,, the null hypothesis of no deleterious impact is
accepted with probability 1 — o for 6 > p. Given that 1 — « is typically quite large (eg. > 0.95), the
implicit readiness of declaring ‘no deleterious impact’ may be troublesome, particularly when 0 is
only marginally greater than p. The probability of making this declaration as indicated by the
environmental power will be somewhat less than 1 — o whenever 0 is only marginally greater than p
(the value of 0 for which x(0) equals 1 — « is found as the solution to W (0)¥,(0) = o).

Case 3: 0<p

In this case the true proportion of compliances is less than that which is specified and ¥ (6) will be
small and ¥, (6) larger. In the extreme as 6 — 0, ¥;(0) — 0 and ¥,(6) — 1 and thus x(0) — 1.
Again, () possesses more desirable characteristics than either ¥, (6) or W,(8) alone.

An example illustrating these principles is now provided.

4. EXAMPLE

Suppose that for a particular water quality criterion, the 90th percentile is specified to be 7. We
wish to assess environmental compliance by an examination of specimen concentrations at 15
randomly selected locations, using an o = 0.05 test. Thus in this case we have n = 15, a = 0.05,
and p =0.9.

Now, 8 = P[X < 7] is the true proportion of the population that does not exceed the guideline value.
We consider the following five scenarios for 6:

0 = 0.9 (compliance in a strict sense, but not unequivocal)
0 = 0.925 (marginally compliant)

0 = 0.98 (demonstrably compliant)

0 = 0.88 (marginally non-compliant)

0 = 0.6 (demonstrably non-compliant).

Table 3 indicates the probabilities of making the correct judgement under 2; and €2, separately and
also gives the EP for each case.

For the above example it can be established that x(0.9614) = 0.95. Observe that 6 = 0.9614 lies
between our subjective classifications of marginally compliant and demonstrably compliant. Under
decision framework €); there is a considerably smaller probability (0.593) of declaring compliance
than would be the case under (), or as measured by the EP.
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Table 3. Probabilities of correct decision-making for various combinations of 6 and decision frameworks

0
0.6 0.88 0.9 0.925 0.99
Q 0.95 0.95 0.95 0.151 0.911
) 0.990 0.109 0.95 0.95 0.95
EP 1.00 0.1364 0.0 0.275 1.00

5. SAMPLE SIZE DETERMINATIONS USING EPA

It is clear from the example and the ensuing discussion that the EP as determined by the statistic x(6)
has properties which are more intuitively appealing than those associated with either €2; or €2,. On this
basis we claim it makes more sense to plan sampling effort around the attainment of a ‘reasonable’ EP
(e.g. > 0.8) rather than focusing on the conventional definitions of statistical power (Cohen, 1988).
The immediate difficulty, however, is the dependency of the EP on the true (but unknown) 6. As with
Equations (7) and (8) the unconditional EP is obtained as the integral

/ (0)g6(0)d0 (10)

An obvious candidate distribution for © is the beta, although we have found a suitably constrained
Burr Type XII distribution (Burr, 1942) to be particularly useful. The form of the pdf is given by
Equation (11):

c—1
2o (0:k,¢) = — K1 =0) 0<0<1 (11)

1_9 cq k+1
1 -7 96‘+1
(5]

The range of possible shapes available using the family of curves using Equation (11) is illustrated in
Figure 2.
Continuing with the previous example, suppose our prior belief in 0 is adequately expressed by the pdf
g(0;k =5,c = 1.1) that has approximately 65 per cent of its probability mass below 0.9 and 35 per
cent above. This prior probability distribution is consistent with a subjective belief that tends to favour
non-compliance, although not overwhelmingly so. A plot of the pdf is shown in Figure 3.
Then the unconditional EP for a sample of size n = 15 is 0.725. To achieve an unconditional EP of 0.8
the sampling effort would need to be increased to n = 29. By way of comparison, the unconditional
power associated with the conventional hypothesis formulation (£2,) is 0.461. Note that there is an
upper limit on the power which could be achieved under the conventional (‘brown’) decision
framework and no amount of sampling can increase this figure. This is a direct consequence of the
Bayesian prior that we impose on the parameter ©. This is readily explained as follows.

Under decision framework 2, the conditional power of the test is given by Equation (5). As
n — oo we have z,6//n — 0 and X — p. Thus, in the limit, Equation (5) becomes Plug > T — z,0].
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1

0.6 0.8
Figure 2. Examples of Burr’s distributions generated using Equation (11).

But ptig =7 —zpc and so this probability becomes P[ze < z,)which is equivalent to P[© < p]

(note that © is a random variable having prior pdf go(6) and hence zg is also a random variable).
The probability P[© < p] thus represents that maximum power attainable. In the example above

this is 0.65.

pdf
[\S]
I

Theta

Figure 3. Burr’s distribution with k =5 and ¢ = 1.1
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Figure 4. Relationship between EP and sample size for the case p = 0.9.

6. SOME PROPERTIES OF THE EP STATISTIC

Figure 4 shows conditional EP curves for samples of size 10, 25, 50, and 100 for the case p = 0.9. It is
evident that the plots are asymmetrical although the asymmetry about 0 = 0.9 diminishes with
increasing sample size. From Figure 4 we see that for a sample of size n = 10 the EP exceeds a
nominal 0.8 for 0 < 0.8 or 0 > 0.96. In other words, even small samples have a high EP when we are in
compliance (i.e. > 0.9 ). On the other hand, such a small sample can only detect demonstrably out of
compliance situations (i.e. those for which 0 < 0.8). If we assumed that it was equally likely that the
true value of 0 lay between 0.85 and 0.95, say, then the unconditional EP would be 0.202 for
n = 10,0.378 for n = 25,0.530 for n = 50, and 0.663 for n = 100. These figures are obtained by
effectively averaging the appropriate curve in Figure 4 between 0 in the range 0.85 to 0.95.

In the example of the previous section we chose a prior pdf for 0 which reflected our belief that
‘non-compliance’ was more likely than ‘compliance’. Thus, the ‘averaging’ process just described
gives more weight to the out-of-compliance part of the EP curve. This situation is depicted in Figure 5.

7. CONCLUSIONS

In this article we have developed a compromise approach to power analysis and sample size
determination for environmental assessment. The method acknowledges the legitimacy of different
formulations of the null and alternative hypotheses for environmental monitoring and introduces a new
statistic called the environmental power (or EP) as a means of reconciling potentially conflicting
results that can arise from different approaches. Furthermore, the use of Bayesian priors to
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Figure 5. EP curve (solid line) for n = 30 and p = 0.9 with assumed prior distribution (dashed line) for 6 overlaid.

accommodate imprecise information about the true state of nature coupled with an emphasis on
population percentiles makes for a powerful and flexible planning tool.

It is recognized that these benefits come at the price of increased complexity and they demand a
higher level of technical sophistication than do standard techniques. However, the procedures
described are particularly amenable to computer implementation, and this would be a necessary
next step if our environmental power analysis were to gain widespread popularity among natural
resource managers.

One remaining difficulty concerns the appropriate choice of distribution for the Bayesian prior. We
have introduced a modified Burr distribution as a flexible family of pdfs in the development of our
methodology. Although the choice of parameter values for ¢ and k will not be immediately obvious, a
number of approaches can be contemplated. For example, by specifying the mode and mean of the
distribution we can solve the following two equations for ¢ and k:

Mode:

d ke(l—y) ! _
AT

Mean:

1 c—1
ke(1 —y
/ y ( ¢ ) Ay =n
0 {1 + [M] :| yc+l

y
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Table 4. Parameter estimates for modified Burr distribution for specified mean

and mode.
Mean Mode c k
0.8 0.9 1.257 5.123
0.7 0.9 1.109 2.462
0.6 0.9 1.041 1.512
0.7 0.8 1.285 2.701

o
T

0 0.2 .
—— mode=0.9 ; mean=0.8
----" mode=0.9 ; mean=0.7

mode=0.9 ; mean=0.6
— - mode=0.8; mean=0.7

Figure 6. Modified Burr distributions for parameter values given in Table 4.

This has been done for a limited number of cases and the results displayed in Table 4 and the
corresponding pdfs. illustrated in Figure 6.
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