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Chapter 

4 
S E N S O R  

N E T W O R K  

O P T I M I S A T I O N  
 

 
 

4-1 Introduction
8

 
Spatial surveillance is a key component of monitoring programs which provide an 

early detection capability of disease and pest incursions as well as informing assessments of 

plant and animal health status for trade purposes. International standards for phytosanitary 

measures and guidelines for surveillance have been established under the International 

Plant Protection Convention (FAO 1998). These guidelines distinguish between two broad 

classes of surveillance: specific surveys in which information is obtained on a particular pest 

over a relatively narrowly defined spatial-temporal extent; and general surveillance activities 

in which information is gathered on one or more pests over a wider area and from many 

sources - including specific surveys (Pheloung 2004). Some examples of foreign organisms 

that are of concern include: Siam weed (Chromolaena odorata); papaya fruit fly (Bactrocera 

papayae); red imported fire ant (Solenopsis invicta); branched broomrape (Orobanche ramosa) and 

kochia (Bassia scoparia) (Pheloung 2005). 

  Plant pests take a variety of forms including insects, weeds, fungi, bacteria, 

viruses and other harmful organisms and usually find their way into the country via trade 

and travel (Pheloung 2004). Of particular concern is Australia’s vulnerability to fruit fly and 

since 2006 there has been renewed interest in developing a strategy to underpin a national 

approach to the management of this pest 

(http://www.planthealthaustralia.com.au/fruitfly/public.asp?pageID=243). This national 

fruit fly strategy (NFFS) builds upon the successful national fruit fly trapping program 

which targets exotic fruit fly pests (Bactrocera spp.) entering through international pathways at 

ports (Pheloung 2005). 
                                                 
8 The illustrative examples and motivating context used in this chapter relate to the detection of an equine influenza 
outbreak. It is acknowledged that the methodology is potentially better suited to the detection of plant pest and 
disease outbreaks. Unfortunately our requests to access the Australian Plant Pest Data Base were unsuccessful as 
were attempts to interface with the CRC Plant Biosecurity Surveillance research program. 
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With respect to animal diseases, a number of potential and serious risks exist 

including: Avian Influenza (or Bird Flu); Bovine Spongiform Encephalopathy (BSE); Foot 

and Mouth Disease (FMD); Equine Influenza (EI); Rabies; and Varroa mite. Australia has 

developed a number of emergency response plans as well as a spatial and textual, web based 

software application tool called BioSIRT (Biosecurity Surveillance Incident Response and 

Tracing). 

While incident response plans and tools are vital components of a combative 

strategy, it has been noted that by the time an incursion is detected, the prospects for 

eradication are very poor and prohibitively expensive (Pheloung 2004). Nairn et al. (1996) 

and others have long advocated strategies based on avoidance rather than eradication. Fox 

et al. (2009) noted that surveillance programs for monitoring invasive plants were expensive 

yet budgets allocated for this purpose were invariably “highly constrained”. Under such 

circumstances there is a clear need to allocate scarce monitoring resources in the most 

effective way possible. Fox et al. (2009) also observed that previous attempts at 

‘optimisation’ utilised economic tools that did not have any spatial or temporal 

representation.  

In the following sections of this chapter we outline a mathematical programming 

approach to the identification of an ‘optimal’ configuration of ‘sensors’ as part of a general 

biosecurity surveillance program. A sensor in this context is defined broadly as any 

instrument, method, procedure, or device that acquires information or samples related to 

the biosecurity threat under investigation. We acknowledge that our (artificial) example of 

sensor network optimisation for detecting an EI outbreak may not be the most suitable 

candidate for our methodology. However, due to our inability to access realistic plant data 

(see footnote on previous page) and the ready availability of EI and demographic data, we 

used the latter for illustrative purposes. The suitability or otherwise of the example does not 

diminish the integrity of the proposed strategy. 

4-2 A surveillance network for EI 

On August 24, 2007 a disease strategy for equine influenza (EI) was released by 

Animal Health Australia (2007). The AHA report noted that “there has been no occurrence 
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of EI in Australia … and vaccination is not practised.” Regrettably, that situation changed 

with the first detection of EI in the same month in the Sydney area. The disease spread 

rapidly through northern NSW into Queensland where it concentrated in the Brisbane 

region (DPI 2008). The NSW situation by September 12, 2007 is shown in Figure 1. 

Equine influenza (EI) is an acute, highly contagious (having an almost 100% 

infection rate), viral disease which spreads rapidly in horses and other equine species (NSW 

DPI 2008). Humans are not affected by this virus although they can be responsible for its 

spread. Most animals exposed to the virus will show signs within a period of 1-5 days. 

Typically, an infected animal will develop a fever, a dry hacking cough and have a 

suppressed appetite. Recovery usually takes 2 to 3 weeks.  Being a virus, there is no 

effective treatment and the risk of secondary infections, such as pneumonia is high. 

   
Figure 50.  Detection of EI in NSW as at September 12, 2007. 

 Source:  http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0009/179406/IP-equine-influenza-map-nsw-12-sept-07.pdf 
 
 

With respect to biosecurity, responsible agencies in Australia divide their operations 

into pre-border, border, and post-border monitoring and surveillance activities. A recurring 

and important issue is where to place limited resources and effort so as to maximize the 

effectiveness of the surveillance program.  For example, given the map of Figure 50 

together with other ancillary information about the population at risk (size, geographic 

extent, spatial aggregation, susceptibility etc.) what configuration (numbers, types, and 
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placement) of monitoring activities delivers the ‘best’ surveillance outcome? Clearly, terms 

like ‘best’ need to be defined as does a metric of surveillance utility. One optimization 

criterion might, for example, be the maximization of the probability of detection. However 

for our problem formulation, we make the following assumptions: 

 detection probability is a non-decreasing function of monitoring effort; 

 detection probability is heterogeneous in space and time; 

 the cost of monitoring is directly proportional to the amount of resources 

devoted to the monitoring program; 

 the total cost of monitoring is constrained. 

 
We consider a formulation of the general surveillance design problem (ie. the 

optimal placement of sensors in a distributed network) as a constrained integer linear 

programming problem (ILP). The objectives are to:  

i. Recast a conceptual understanding of the monitoring  network for EI as 
a constrained optimisation problem; 

ii. Provide realistic models of ‘risk’ over a 2D space; 

iii. Code the problem for solution using ILP; 

iv. Solve an artificial example problem. 
 

In the following sections we provide details associated with items (i) to (iii) above 

and in particular, demonstrate the feasibility of item (iv). To this extent, we regard (i) to (iv) 

as forming the basis of a prototype ‘system’ which we has been developed to a proof-of-

concept stage. The challenge that lies ahead is to implement this system on a suitably 

calibrated real problem.  

4-3 The Maximal Covering Location Problem 
(MCLP) 

The optimal sensor location problem for building an EI surveillance network is a 

variant of a problem known in the Operations Research (OR) literature as either the 

maximal covering problem (MCP) or the maximal covering location problem (MCLP) 
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(Church and ReVelle 1974, Underhill 1994, Downs and Camm 1996, Chakrabarty et al. 

2002). Numerous implementations of the MCLP exist including the placement of guards in 

an art gallery (O’Rourke 1987), the siting of regional health facilities and services (Eaton et 

al. 1977, Pirkul and Schilling 1988), optimal placement of ambulance services (Chuang and 

Lin 2007) and conservation reserve site selection (Önal 2003). More recently the 

omnipotent threat to homeland security has focussed the attention of some researchers on 

optimal network designs to detect terrorist activities (Anderson et al. 2007). 

The objective of an MCP/MCLP is to determine the configuration of sensors of 

varying types (in terms of cost, monitoring range, detection capabilities) that achieves 

mandated levels of surveillance accuracy at minimum total cost. When sensors can be 

located anywhere on a plane the problem is referred to as the planar maximal covering 

location problem (PMLCP) (Church 1984). Church and ReVelle (1974) provided the first 

mathematical formulation of the MCLP for the problem of siting public facilities. In this 

context a candidate facility site ‘covers’ a demand node if it is within some maximum 

distance from that node. Mathematically, we have 

  Maximize:  
1

m

i i
i

c y


              (4.1) 

s.t.   
1

         
n

ij j i
j

a x y i I


           (4.2) 
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             (4.3) 

 0,1      iy i I             (4.4) 

 0,1      jx j J             (4.5) 

In this formulation,  1, ,J j j n   represents the set of candidate facility sites and 

 1, ,I i i m   denotes the set of demand nodes; ic is the population to be served at 

demand node i. Our (binary) decision variables are jx such that 1jx  if site j is chosen for 



 

Page 84 

a facility and 0jx  otherwise. The constraint represented by equation 4.3 requires that k 

facilities / sites are to be selected. The indicator variables iy assume a value of unity if 

demand node i is covered by some facility j and assume a value of zero otherwise. Similarly, 

variable ija is unity if the shortest distance between demand node i and facility j does not 

exceed some prescribed maximum permissible distance.  

Mathematicians refer to MCLPs as being NP-hard. While not wishing to go into the 

complexities of mathematical algorithms, a problem is assigned to the NP 

(nondeterministic polynomial time) class if it is solvable in polynomial time. A problem is 

NP-hard if an algorithm for solving it can be translated into one for solving any NP-

problem. NP-hard therefore means ‘at least as hard as any NP-problem’, although it might 

in fact be harder (Weisstein, undated). Practical approaches to solving the MCLP problem 

include mathematical programming methods, genetic algorithms, graph theory, complete 

enumeration and heuristics. Genetic algorithms (GAs) have become popular in recent years 

as a way of solving large optimisation problems such as the MCLP (Arakaki and Lorena 

2001, Buczak et al. 2001). A Genetic Algorithm is an adaptive heuristic search algorithm 

that embodies the evolutionary concept of ‘survival of the fittest’. The success of GAs is 

due to an intelligent exploitation of a problem’s solution space.  

Perhaps one of the most common solution techniques (possibly due to the 

accessibility of ‘off-the-shelf’ solvers) is integer linear programming (ILP). Integer linear 

programming is a variant of linear programming (LP) in which the decision-variables 

assume integer values only – in the case of the MCLP, the decision-variables are binary 

(0/1).  In the formulation above, we typically have m n  and Downs and Camm (1996) 

note that direct ILP approaches to solving equations 4.1 to 4.5 above frequently suffer 

from a high degree of both primal and dual degeneracy. Replacing iy with 1i ih y  in the 

MCLP formulation leads to an equivalent minimisation (of uncovered nodes) problem which, 

it is claimed, identifies an optimal solution more quickly and reduces primal degeneracy 

(Downs and Camm 1996).  

In the next section we describe a more general version of the MCLP in which each 

sensor type is characterised by a spatially-explicit weighting function (representing say, a 
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detection probability or ‘depth of feel’) rather than a deterministic cut-off range. The 

distinction is that the weighting-function can provide an anisotropic representation of 

monitoring ‘effectiveness’ (which itself may be sensor-specific) that assigns higher weight 

when the target is close and less weight when the target is far away. This ‘envelope of 

effectiveness’ is then combined with a 2D ‘risk’ surface to produce a final set of weightings 

(the ija of equation 4.2). We are unaware of any similar formulation of the MCLP and to 

that extent, we believe that this represents a new and original contribution to the literature 

on covering problems. We have termed this the generalised MCLP or g-MCLP. 

4-4 The generalised MCLP (g-MCLP) 
 

Our problem formulation is based on subdividing a region of interest into a regular 

grid of appropriate dimensions. What constitutes ‘appropriate’ will be problem specific but 

will be based on considerations of: (i) computational resources; (ii) mathematical 

tractability; and (iii) a context-specific decision unit. By (iii) we mean the dimensions of a 

grid cell that are commensurate with the scale of the range over which sensors are effective 

and the geographic extent of the surveillance space. Thus, for example, if a particular 

monitoring device or activity is effective up to 50-80 km and surveillance is over 250,000 

km2 an appropriate grid cell might, for example be 20 km x 20 km. The motivation for 

discretising the problem is two-fold: (i) a discrete representation of the surveillance space 

facilitates codifying and solving the problem as a MCLP; and (ii) it is consistent with the 

way in which management agencies characterise regional risk (Figure 37).  The generic 

situation is depicted in Figure 39. 

The overall network configuration is defined by the number, type, and spatial 

location of individual sensors. For each grid cell we define the following binary decision 

variable: 


 


, ,

1 if cell { , } has a sensor of type 

0 otherwisei j k

i j k
x     (4.6) 
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The concept of ‘envelope of effectiveness’ is illustrated in Figure 51 which shows 

ellipses centred at three locations (cells). The orientation and spatial extent of an ellipse is 

assumed to be a function of the monitoring instrument, device or procedure. Furthermore, 

it is assumed that the information for cells close to the sensor location will be more relevant 

or accurate than for cells further away. This implies a spatial gradient or weighting of 

‘accuracy or ‘relevancy’.  Note, this assumption may not apply in all instances in which case 

an equal weighting scheme can be used. 

 

 
Figure 51.  Illustration of 'envelope of effectiveness' for three sensor types. Note that range 
and orientation can be different for each sensor. 

 

In order to formulate a mathematical objective function, we need first to define a 

measure of utility. Obvious candidates include risk (however defined), cost, and detection 

probability. Clearly, the first two choices result in minimisation problems while use of the 

third results in a maximisation problem. For illustrative purposes, we will use a combination 

of both risk (defined as the likelihood of spread of infection) and detection probability.  

The objective function will be the maximisation of the overall probability of detecting the 

spread of EI. Note, detection probability is a characteristic of the sensors while the risk of 
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spread is a function of uncontrollable (external) factors. However, the overall probability of 

detecting the spread of EI is a product of both terms. Thus we have: 

 

detection at  with sensor located at disease present in vicinity of ( )P x y x w h      (4.7) 

 

   present at location ( )P x E x
           

(4.8)

              

   detection at  with sensor located at P x y E x w h          (4.9) 

 

where h x y   is the distance between the site of interest and the sensor location. 

Furthermore, we impose the requirements that  0 1w  and   0w   . 

4-4-1 A logistic model for disease probability 
In the absence of hard data, we have used the following logistic model to compute 

the probabilities in equation 4.8: 

 

          
        

0 1 2 3

0 1 2 3

exp log_density log_density

1 exp log_density log_density

EI x x EI x x
E x

EI x x EI x x

   
   
   


    

  (4.10)

  

where the  terms are model parameters; EI is an indicator variable having value 1 if EI has 

been detected at x; and log_density is the natural logarithm of population density at x.  For 

positive values of 1 2,  and 3 , risk is an increasing function of population density and will 

tend to increase rapidly if there has been at least one reported incidence of EI at x.  

The discrete version of the surveillance problem involving a single sensor is shown 

in Figure 52. 
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Figure 52. Representation of single sensor network. Sensor is located location in cell {i,j}. The 
probability of detection in cell {k,l} is a product of the risk/likelihhood for cell {k,l} (denoted Ekl) 
multiplied by the sensor’s detection probability wijkl which is a function of distance (dijkl) between 
cells {i,j} and {k,l}). 

 

In reality the situation is more complex than indicated by Figure 52 since there will be 

multiple sensors and it is conceivable that some grid cells will fall within the envelope of 

effectiveness of more than one sensor. The more general situation is shown in Figure 53. 
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Figure 53. Generalisation of previous figure for multiple sensor network. 

 
 

4-5 Problem formulation 
We consider the problem of optimally locating m sensors on an r x c grid. It will be 

convenient to use matrix notation to define the objective function and in order to simplify 

this expression it is helpful to ‘unpack’ the row-column data associated with the sampling 

grid. It doesn’t matter how this is done although we have chosen to do this row-by-row to 

form the following three matrices:  
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Decision matrix: X 
 

This is a ( )mrc x m block-diagonal matrix with   (1) ( ), , mX diag X X where ( )pX is a 

( 1)rc x column vector having elements defined by equation 3.1 for each of the rc 

grid cells for the thp sensor. 
 
Weight matrix: W 
 

This is a ( )rc x mrc  matrix having structure:    (1) (2) ( )mW W W W where ( )pW is a 

( )rc x rc matrix of detection probabilities associated with the thp sensor. Let ( )p
jw be 

the thj ( 1)rc x column of ( )pW . The elements of ( )p
jw are the detection probabilities for 

all rc grid cells obtained when sensor p is placed within the thj grid cell. 
 

Risk vector: E 
 
E is a (1 )x rc row vector whose entries are the unpacked E’s of Figure 52. 

 
 

Objective function 
 

The objective function is: 
 

Maximize     . . .1TE W X      (4.11) 
 

where 1T is an ( 1)m x vector of ones. 
 

Constraints 
 
A complete set of constraints will require elicitation. However, by way of example 
we could have constraints on cost; number of sensor sites; and sub-region 
representation (to accommodate subjective requirements for monitoring in certain 
regions). 
 

Number of sensors of type j:    ( )1T j
jX n   

 (4.12) 
where 1 is a ( 1)rc x  vector of ones. 
 
 

Total number of sensors:    1T TJ X N   
 (4.13) 

where TJ is an (1 )x mrc vector of ones and 1T is a ( 1)m x vector of ones. 
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Total Cost:    1T TC X    (4.14)
  
 

where TC is a (1 )x mrc vector of costs and 1T is a ( 1)m x vector of ones.  
 

The structure of TC is  
  

(1) (2) ( )mC C C where component ( )jC is a (1 )x rc vector of 

costs associated with locating a sensor of type j within each of the rc grid cells. Note, 
that this formulation is sufficiently general in that it acknowledges that 
establishment an operating costs can vary spatially even for the same type of 
equipment. 

 

Representitveness   


 ( )

1

m
T j
S S

j

L X R     (4.15)  

 

where T
SL is a (1 )x rc vector of ones and zeros such that a 1 indicates that the relevant 

grid cell is a member of sub-region S and SR is a scalar lower bound on the number 
of sensor locations that must be placed within sub-region S. 
 

Minimum spacing        
( ) ( ) 1          ,

Ti jX X S i j  (4.16) 

 
where S (a scalar) is the minimum separation between any two sensors.  
 
 
Note that equation 4.16 is non-linear in the decision-variables. Equation 4.16 can be 

linearised with the imposition of additional constraints. This is achieved as follows:  

suppose u and v are two binary variables. Then their product uv can be replaced by a new 

binary variable with the additional constraints: (i) 2u v   ; and (ii) 1u v    . 

 
 

4-6 Example  
Important note: This example is for illustrative purposes only and uses 
artificially constructed data to represent EI risk. 

 
We demonstrate the approach outlined in the previous section by examining a 

number of scenarios for optimal sensor location over the state of NSW under various 

constraints. A 14 x 14 grid has been used corresponding to a grid cell size of approximately 

68 km (north-south) x 144 km (east-west). Demographic data for local government areas 

has been taken from publicly available information (see Appendix F). A surface/contour 
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plot of the population density is shown in Figure 54 while Figure 55 shows population 

density contours with EI detection locations superimposed. 

 

Figure 54. 3D Surface/contour plot of NSW population density. (Raw data given in Appendix F). 

 
Figure 55.  NSW population density contours. Solid red circles correspond to EI locations as 
shown in Figure 1. 
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The following parameter values have been used in equation 4.10: 0 1.0023   ; 

1 1.6554  ; 2 0.23728  ; and 3 1.16869  . A plot of the 3D risk surface is shown in 

Figure 56 and again as a contour plot with superimposed EI detection locations in Figure 

57.  

 

Figure 56. 3D surface/contour plot of EI risk over NSW. 

 

Because of the discreteness of the problem formulation our decision variables are 

individual cells - not infinitesimally small points on the map. For this reason we need a 

measure of risk for a cell rather than a point. To this end, the continuum of risk has been 

averaged over each grid cell to obtain an average cell risk (Figure 58). 
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Figure 57. Contour plot of EI risk in NSW. Solid red circles are EI locations from Figure 1. 

 

 

Figure 58. Block-averaged risk probabilities. 
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4-6-1 Implementation 

Pre-processing of input data (creation of W matrix and risk vector E) and various other 

manipulations were performed in Mathcad 14 (Parametric Technology Corporation). The 

objective function is given by equation 4.11. The ILP solution was implemented using 

extended LINGO 11 (Lindo Systems 2007). The LINGO code appears in Appendix G. 

Elements of the vector E and cost coefficient data appear between the “data” and 

“enddata” lines of the LINGO program in Appendix G. 

 

Scenario evaluation 
 

A number of scenarios were devised to illustrate the impact on the optimal sensor 

network as a result of altering one or more constraints. The system is sufficiently flexible to 

allow the incorporation of as many constraints as desired as well as the ability to relax or 

tighten constraints individually or simultaneously. Combinations of different surveillance 

modes can be readily accommodated by specifying the number and type of ‘sensors’ 

available. Individual sensor effectiveness is reflected in the matrix of weights, W defined 

earlier. For the purpose of illustration, we assume we have available three different 

surveillance methods or sensors. The number and characteristics of each of these is given in 

Table 4-1. 

Table 4-1   Sensor characteristics. 

 

 

 

 

A graphical depiction of the sensor characteristics corresponding to the parameters in Table 4-1 
is shown in Figure 59. 

 

 

 

Sensor Type
No. Sensors 

available 
Major 
range 

Major 
range 

angle 

1 1 50 25 3400 

2 2 30 25 600 

3 2 35 20 00 
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Six scenarios showing the impact on the optimal solution as a result of changing the 

minimum separation and cost constraints are listed in Table 4-2.  An arbitrary function was 

used to generate a cost surface over the region of interest (Figure 60). By the same 

reasoning that was applied to the risk metric, costs at individual points need to be averaged 

over each cell (Figure 61). 

 

 

Table 4-2.  Constraint data.  

Scenario 

Max. number of sensors  Minimum 
sensor 
spacing 

  km  

Cost 
constraint 

 $  Type 1  Type 2  Type 3 

1  1  2  2  30  ∞ 

2  1  2  2  35  ∞ 

3  1  2  2  45  ∞ 

4  1  2  2  60  ∞ 

5  0  2  2  0  20000 

6  0  2  2  35  20000 

 

Figure 59. generic representation of three sensors having characteristics given in Table 4-1.
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Figure 60. Cost-contours for surveillance monitoring. 

 

The optimal sensor configuration for each scenario has been identified (Figures 62 to 

679). Figure 68 shows a solution configuration overlaid on satellite imagery. While the 

results in Figures 62 to 67 are intuitively sensible (solutions targeting areas of high risk 

while honouring the minimum separation and cost constraints) their identification requires 

a considerable amount of computation. Nevertheless, the use of highly optimised numerical 

algorithms such as those found in LINGO® meant that a solution was generally found 

within a few minutes when run on a standard desktop computing platform. 

  

                                                 
9 The contour lines in Figures 62 to 67 have no meaning and are an anomaly of the software used to produce these 
figures. 
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Figure 61. Block-averaged surveillance monitoring costs. 

 

 
Figure 62. Optimal solution for scenario #1: 5 sensors; min spacing 30 km; no cost 
constraint. 
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Figure 63. Optimal solution for scenario #2: 5 sensors; min spacing=35 km; no cost 
constraint. 

 

 
Figure 64. Optimal solution for scenario #3: 5 sensors; min spacing=45 km; no cost 
constraint. 



 

Page 100 

 
Figure 65. Optimal solution for scenario #4: 5 sensors; min spacing=60 km; no cost 
constraint. 

 
 
 

 
Figure 66. Optimal solution for scenario #5: 4 sensors; no min spacing; cost <=$20,000. 
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Figure 67. Optimal solution for scenario #6: 4 sensors; min spacing 35 km; cost <=$20,000 

 
Figure 68.  Optimal monitoring locations corresponding to Figure 62 overlaid on geographic 
map. (Note: Apparent positional discrepancies due to different mapping projections). 
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4-7 Discussion  
The use of mathematical programming techniques to optimise network design 

problems is indeed not new. Applications of mathematical programming techniques to the 

optimisation of sparse sensor networks have been associated with air quality monitoring 

(Fox et al. 2009, McElroy et al., 1986), water supply security (Chakrabarty,  & Iyengar, 

2002) and computer network integrity (Noel and Jajodia, 2007).  We have uncovered only 

limited evidence of mathematical optimisation methods applied to the identification of 

optimal network designs for biosecurity surveillance. 

Alternatives to the conventional mathematical programming methods listed above 

include genetic algorithms and heuristic algorithms (Kanaroglou et al., 20005; Liu, et al., 

1986). These are briefly discussed below. 

 
Genetic algorithms (GAs)  

These commence with a group of possible solutions; coded as binary strings and then 

the solutions with greater utility are selected, perturbed and re-combined to produce even 

better solutions. Genetic algorithms are an example of an evolutionally algorithm which is 

generally completed either for a set number of generations or until it does not seem that 

any further improvement is possible. GAs provide efficient location of near optimal 

solutions without any necessary previous understanding of the search space.  

 
Greedy searches  

These are a type of heuristic algorithm whereby actions are chose on the basis of their 

improvement in the objective function for that step. They are computationally efficient and 

can allow for a reasonable solution to very complex problems. Noel and Jajodia (2007) use 

a modified greedy search. They are also scalable to constraints to a greater degree than 

other approximate algorithms. Krause et al. (2006) discusses the problem with the 

performance of greedy searches in a situation where communication costs are considered 

critical. In terms of computational effort greedy search algorithms tend to perform 

significantly worse than other stochastic algorithms. 
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Gradient ascent 

Gradient ascent is a non-linear optimisation algorithm which attempts to find extrema 

by moving in the direction of steepest gradient of the objective function. It was used for 

example by Vickers et al. (2006) to guide the optimal placement of sensors on the base of 

information on the state of the environment (specifically water flow) for a defensive 

military application. Gradient ascent methods will identify local extrema but can get 

‘trapped’ and fail to reach a global optimum. To circumvent this problem, gradient ascent 

programs are often run as ensembles generated with randomised initial conditions. The best 

performing member of the ensemble is chosen as an optimum and generally provides a 

more robust estimation of the global maximum. 

 

The issue of surveillance network design is as important as the surveillance activities 

and data analysis methods themselves. A sub-optimal monitoring network design is not 

only wasteful of precious monitoring resources but compromises statistical power – that is 

the ability to identify disease outbreaks, quarantine threats, or (bio) security violations when 

they have in fact occurred.  As noted by Patil et al. (2006) “surveillance geoinformatics of 

spatial and spatiotemporal hotspot detection and prioritization is a critical need for the 21st 

century”.   

Although remote sensing will continue to provide an important capability in plant 

protection and monitoring, the need for ground-based surveillance systems will remain. To 

be effective, remote sensing needs to be able to resolve zones of infection that are as small 

as 5m in diameter – that is, of the order of a single pixel of information generated by 

present day satellites (Patil et al. 2006).  

While the siting of biosurveillance ‘sensors’ has been recognised as an important 

consideration in monitoring program design, most efforts in this regard have been driven 

largely by logistical considerations using heuristic algorithms. For example, in response to 

the September 11 2001 terrorist attacks the United States government, through its 

Department of Homeland security, deployed the BioWatch Program to provide early 

warning of a mass pathogen release. Although exact details of the location of BioWatch 

monitoring sites is unknown, it is thought that these may have been co-located with EPA 

air quality monitoring sites “on the basis of cost and ease of access” (Shea and Lister, 2003).  
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In this chapter we have presented a design tool/methodology which compliments the 

temporal monitoring of Chapter 2 and the spatial-temporal modelling of Chapter 3. 

Together, these three chapters provide new and novel methods for the design, analysis, and 

prediction of disease/pest movement in space and time.  

We regard these methods as a starting point for further exploration and development. 

In particular, they need to be thoroughly ‘road-tested’ on a suite of comprehensive 

scenarios based on actual biosecurity monitoring and surveillance case studies.  
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Chapter 

5 
R O B U S T  M E T H O D S  

F O R  

B I O S U R V E I L L A N C E  

 
 

5-1 INTRODUCTION 
 

Since the events of September 11 2001, there has been increased emphasis on 

monitoring and surveillance to detect and prevent further terrorist attacks. While significant 

resources have been devoted to the mechanics of screening, far less attention has been paid 

to quantifying the efficacy of these surveillance programs. 

Given the high volumes of passengers, containers, mail items, and various other 

inter-continental ‘movements’, it is pertinent to examine the effectiveness of the inspection 

regimes. From a statistical perspective, the answer is partly provided by the theory and 

methods of statistical process control (SPC) and elementary probability theory (see chapter 1). 

However, bio-surveillance, syndromic surveillance, and counter-terrorism surveillance are 

fundamentally different from monitoring activities for quality assurance in an industrial 

manufacturing process. Unlike the industrial setting where there is generally good 

information on the performance of the manufacturing process (eg. percent defective; 

proportion of non-conforming or ‘out-of-spec’ items), monitoring in the context of bio / 

homeland security is characterised by extreme uncertainty. For example, because of the 

nefarious activities of terrorist organisations, security and intelligence organisations do not 

always know what it is they’re looking for. As terrorists become increasingly sophisticated 

in their modes of attack, our uncertainty in both the likelihood of an attack and which 

sentinels to monitor increases. By way of example, prior to 9/11 there was little or no 

surveillance at general aviation (GA) airports or monitoring of student pilot training. This 

lack of information regarding what to monitor is a case of Shackle-Popper Indeterminism 

(SPI) (Ben-Haim, 2006). The distinguishing features of SPI are: 
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Intelligence:   What people know influences how they behave. 
 
Discovery: What will be discovered tomorrow cannot be known today. 
 
Indeterminism: Tomorrow’s behaviour cannot be modelled completely 

today. 
 
In contrast to traditional methods of (constrained) optimisation, Ben-Haim (2006) 

developed Info-Gap theory to identify robust solutions to decision-making problems under 

extreme uncertainty. Info-gap theory has recently been applied to assessing the 

performance of counter-terrorism surveillance programs (Moffitt et al. 2005) and the 

identification of robust strategies to deal with bioterrorism attacks (Yoffe and Ben-Haim, 

2006). Thompson (unpublished) examined the general sampling problem associated with 

inspecting a random sample of n items (containers, flights, people, etc.) from a finite 

population of N such items in a biosecurity context using an info-gap approach. The basic 

situation considered by Thompson is that there is a probability ( )p n of a catastrophic 

outcome (eg. terrorist attack) given that n events / items out of N have been inspected. The 

info-gap formulation of the problem permitted the identification of a sample size n such 

that ( )p n did not exceed a nominal threshold, c when severe uncertainty about ( )p n

existed. Implicit in this formulation was the assumption that the detection probability (ie. 

the probability of detecting a weapon, adverse event, anomalous behaviour etc.) once 

having observed or inspected the relevant item / event / behaviour was unity. In the 

context of counter-terrorism, our uncertainties (or info-gaps) will most certainly extend to a 

lack of certitude in detection. This is a consequence of the ‘discovery’ aspect of the SPI 

phenomenon identified above. Consider the following examples: 

 

1.  Quarantine authorities invoke various levels of inspection ranging from a 
cursory examination (eg. opening the door of a container and visually the 
contents that are accessible) to full inspection (eg. removal and inspection of 
the entire contents). Clearly, the probability of detecting a prohibited import 
will be much lower in the first case than the second even though the container 
is regarded as having been inspected in both cases; 

 
2. Indeterminism means that security agencies do not always know what they’re 

looking for. For example, liquids are currently banned from hand-luggage on 
certain international flights. This is because explosive devices can be assembled 
from innocuous constituents carried separately by more than one passenger. 
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Prior to this ‘discovery’, the detection probability for an acetone-peroxide 
based explosive would have been small.  

 

In the following sections we describe the general surveillance problem for which the 

probability of detection is less than unity. We then provide an info-gap formulation to help 

identify sampling strategies that are robust to multiple sources of uncertainty – including 

the detection probability.  

 

5-2 Surveillance with imperfect detection 
 
Following Thompson (unpublished), we assume that there is a finite population of N 

objects, events, people, or behaviours that are potentially subject to inspection. From this 

population of N ‘objects’ a random sample of size n is to be inspected.  We define the 

following events: 

 
 I – the event that an object is inspected; 
 

W – the event that an object is a security threat (eg. the object is a weapon, 
the person is a terrorist, the behaviour is indicative of malicious intent); 

 
 D – the event that the security breach is identified / detected. 
 

Furthermore, we assume that only inspected objects are classified as either belonging to D

or D . We thus have      I D D   and hence 

 

   P I P D P D          (5.1) 

 

Furthermore,          I D W D W D W D W        and thus 

 

   P I P D W P D W P D W P D W                   (5.2) 

 
In a biosecurity / counter-terrorism context, arguably, the most important probability is not 

 P W (the probability of a security threat) but rather it is the conditional probability P W D 
   

ie. the probability of a security threat given that no breach of security was detected. 
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The lack of detection of a security breach is due to: (i) the absence of a security threat; 

and/or (ii) imperfections of the detection equipment / method/ process. Our inability to 

distinguish between (i) and (ii) is an info-gap. 

 

5-2-1 Problem formulation 

From elementary probability theory: 
 

P W D
P W D

P D

        


    (5.3) 

 
From equation 5.2 we have: 
 

   P W D P I P D W P D W P D W                   (5.4) 

 
Each of the joint probabilities in Equation (4) can be expressed in terms of relevant 

conditional probabilities viz:  

 

   P W D P I P D W P W P D W P W P D W P W                         (5.5) 

 

Note that 1P D W     and 0P D W    . 

 

We next define the detection efficiency,   as P D W   i.e. the probability that a security breach 

will be detected given a threat actually exists. Furthermore, we let  P W  be the 

unconditional probability that an object is a security threat and   nP I N   the inspection 

fraction or probability. Hence, equation 5.3 can be written as  

 
 1

P W D
P D

       
      

 

     

 
        
 

1

1 1 1 1 1

1

1

 
       

 





       






  (5.6)  
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Next, observe that 

      P W P W I P W I      

       P W I P D W P D W             

 
Therefore  
 

      P D W P W P W I P D W            

              P W P W I P I P D W P W            

             1 P W I             

               1 1 P W I            (5.7) 

 

But,  W and I are independent events and therefore  W and I are also independent 

which means  P W I P W     and thus equation 5.7 becomes 

 

     1P D W          (5.8) 

 
Notice that for the probability in equation 5.8 to be non-negative    i.e the sampling 

fraction must be at least as large as the detection efficiency. Substituting equation 5.8 into 

equation 5.6 gives 

 

    
 

 
1 1

P W D
P D W

  

  

          
 

 

But P D W P D W P W         and since 1,P D W     this becomes 

 1P D W P W          . Thus, 

 
   1

, ,
1

P W D p
 

  

     

    (5.9) 

 
Note, that when 100% inspections are performed, the conditional probability in equation 

5.9 becomes 
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 1
(1, , )

1
P W D p

 
 


     

    (5.10) 

 

and under these conditions, this probability is only zero when the detection efficiency is 

100%. For 0% detection efficiency (1,0, )p   is   - the unconditional probability that the 

object is a security threat. Furthermore, whenever the inspection rate is 100% ,  , ,p   

exceeds (1, , )p   . This increase in ‘risk’ may be regarded as the ‘cost’ associated with less 

than complete inspection. We thus define our performance criterion to be the ratio

 
 

, ,

1, ,

p

p

  
 

, thus 

   
 

1 1
, ,

1 1

    
  
 

  
 

    (5.11) 

 

We next consider an info-gap formulation to assess the effects of uncertainty in key 

parameters (namely and ) on the performance criterion given by equation 5.11. 

 

5-3 An Info-Gap model for surveillance 
performance 

 
Information-gap (hereafter referred to as info-gap) theory is a recent development 

designed to assist decision makers faced with severe uncertainty (Ben-Haim 2006, Regan et 

al. 2005, Carmel and Ben-Haim 2005).  Info-gap theory aims to address the “robustness” of 

decision making under uncertainty.  It asks the question: how wrong can a model and its 

parameters be without jeopardising the quality of decisions made on the basis of this 

model?  

Info-gap theory derives its robustness functions from three elements: a performance 

measure, a process model and a non-probabilistic model of uncertainty. The performance 

measure is a statistical, economic or bio-physical metric of value to the decision maker.  

The decision maker may wish to increase the performance measure (e.g. dollar value of a 

share portfolio) or reduce it (e.g. probability of not detecting a terrorist attack).  In each 

case there is often a critical performance value which defines a change in decision. In our 
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case, the performance measure is   - effectively the reduction in surveillance efficacy 

when less than 100% inspection is employed.  

The process model is a mathematical summary of the system in question.  It describes 

the relationship between the performance measure and the important characteristics of the 

system in question.  In this example the performance threshold is the maximum tolerable 

reduction in surveillance efficacy and the process model is given by equation 5.11.  

 
The info-gap model of uncertainty for the uncertain quantities  in the process model 

is the unbounded family of nested sets  ,U    of possible realisations , where   

represents the unknown “horizon of uncertainty” and   our best or initial estimate of .  

This model satisfies two axioms: 

 

contraction:    0,U     (5.12) 

nesting:    , ,U U          (5.13) 

 

The contraction axiom states that in the absence of uncertainty  0  , our best 

estimate  is correct, while the nesting axiom states that the range of uncertain variation 

increases as the horizon of uncertainty increases.  In all cases  is unknown and 

unbounded with 0  .  In this example the uncertain quantities are the detection efficiency

 and , the probability that an object is a security threat. Thus,  ,    and our initial 

or best estimate of these parameters is denoted    ,   .  

In this section we consider uncertain parameter values – the detection efficiency

and the probability that an object is a security threat,  . The fractional errors   /  

and   /   are unknown. With this prior information we formulate the following 

fractional-error info-gap model: 
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  
       

     
, :       max 0, 1 min 1, 1

, , ,      0
                 max 0, 1 min 1, 1

U
      

   
    

             
           

 (5.14) 

 
 

This is a bounded family of nested sets of   ,  values with the sets becoming more 

inclusive as the horizon of uncertainty,  increases.   

The definition of the performance measure, process model and uncertainty model(s) 

completes the specification of the formulation of the info-gap analysis.  We now turn to the 

derivation of the robustness function.  In info-gap parlance “robustness” is defined as the 

greatest horizon of uncertainty, across all uncertain model components, such that the 

performance measure still meets the pre-defined requirement.  In our application the 

robustness of a surveillance regime in which  x100% of the target population is inspected, 

is the greatest horizon of uncertainty   for which all combinations of the uncertain 

parameters    ,    the minimum required inspection performance is achieved, that is 

 

  
    

 
, , ,

, max : min , ,d d
U    

       


  
    

  
   (5.15) 

 
where d is the required value of  .  Equation 5.15 is the robustness function for this 

application of the info-gap model. The strategy of robust-satisficing (Ben-Haim 2006) is to 

attempt to guarantee an adequate level of surveillance performance, by choosing a value of 

 which is highly robust to uncertainty. Thus, for any inspection fraction , the robustness 

function indicates the confidence in attaining the minimum performance requirement with 

that . 

Examination of the process model (equation 5.11) reveals that it is a monotonic 

decreasing function with respect to  and a monotonic increasing function with respect to

 . Combining this observation with the uncertainty model (equation 5.14) allows us to 

write the inner minimum of the robustness function (equation 5.15) as 

 

 , , , dh           (5.16) 
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where    

     
 

 
   

2

2

1 11 1 1
, , ,

1 1 11 1
h

    
   

    

      
      

 (5.17) 

 

 

5-4 Illustrative Example 

Suppose new intelligence suggested that a clandestine operation had been planned to 

smuggle native fauna out of the country and although the exact mode of export is 

unknown, it is thought to rely on secret cavities sown into a passenger’s clothing. Airport 

security and quarantine staff thus have no clear idea what they are looking for except that 

they have been instructed to closely monitor the appearance, texture, and integrity of 

passengers’ clothes. Our best guess of the parameters    ,    is  0.7  and  0.05   

although considerable uncertainty exists around these figures. Figure 1 plots the 

performance function  , ,   as a function of robustness for a range of  values. 

 
Figure 69. Robustness of surveillance performance for various sampling fractions (lambda). 
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In recognition that 100% detailed inspection of all passengers is not feasible, a 

reduced level of surveillance will be tolerated provided the increased risk (of an undetected 

threat)is no more than 1.5% (relative to complete inspection). The dashed (red) horizontal 

line in Figure 69 is thus our maximum tolerable relative risk. To meet this performance 

requirement a minimum of around 5% of passengers will have to be screened. At this level 

of screening, the robustness to uncertainty is zero and hence, if our initial estimates of the 

probability of a quarantine threat or of the detection probability are wrong, the 

performance requirement will not be met. Increasing the surveillance rate to 50% results in 

about 20% robustness, while an inspection rate of 85% will guarantee the performance 

requirement is met even if our initial guesses for the parameters are in error by 90%. 

 

5-4-1 Comparison with a Bayesian Approach 

The previous example has been modelled using the WinBUGS software. The directed 

acyclic graph is shown in Figure 70. Beta priors have been placed on  and . In particular: 

    ~ (0.05,0.15)unif   

and          ~ (0.1,0.8)unif  

(Note:  has a truncated distribution). The respective prior densities for  and are shown 

in Figures 71 and 72. The WinBUGS code is shown in Figure 73. 
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Figure 70. Directed acyclic graph for the biosurveillance example. 

 

 

 

 

 
Figure 71. Prior density for theta.                  Figure 72. Prior density for phi. 
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Empirical cdfs have been plotted for a variety of  values (Figure 74). Using a 

notional minimum performance criterion of 1.015  , we see that with a 60% inspection 

rate, there is about a 25% probability of meeting this target. This probability increases to 

around 90% for sampling inspection rates of at least 85%. These results accord well with 

the IG analysis. 
 

 

Empirical  

  

model; 
{ 
theta~dunif(0.05,0.15) 
phi~dunif(0.1,0.8) 
psi<-phi*(1-lambda*theta)*(1-theta*phi)/(1-phi*theta*lambda)/(phi*(1-theta)) 
} 
 
list(lambda=0.85) 

Figure .   Figure 73. WinBugs code for biosurveillance example

Figure 74. Emprical cdfs for performance measure of equation 5.11 based on 10,000 simulated 
results  
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5-5 Discussion 

Physical and biosecurity is maintained and enhanced by a combination of activities and 

strategies, not least of which are border inspections of people and containers. A 

characteristic linking both bio-terrorism and biosecurity are the “unknown unknowns”1 – 

that is, we often don’t know what it is we’re looking for. Monitoring strategies for the 

detection of invasive plant or animal species are particularly problematic due to the general 

absence of economic considerations and the climate of severe uncertainty about the 

likelihood of species introductions and successful detection (Moffitt et al. 2008).  

Moffitt et al. (2008) used Info-Gap theory (Ben-Haim, 2006) to deal with the inherent 

uncertainty in biosecurity monitoring while Thompson and Fox (2008) independently used 

the same approach in the context of bioterrorism surveillance. In this chapter we have 

followed the approach outlined in Thompson and Fox (2008) and also compared this with 

the results of a Bayesian approach to the problem of determining an appropriate level of 

monitoring effort. With the choice of priors used in the Bayesian analysis to reflect 

reasonable assumptions about our knowledge (or ignorance) of detection and threat 

probabilities, it was found that both the IG and Bayseian methods resulted in similar 

inspection rates. We suspect this is more coincidence than a convergence of paradigms. 

The IG approach is, despite its appearance, relatively unsophisticated in its treatment of 

uncertainty. Whereas Bayesian methods characterise and manipulate uncertainty via 

probability functions or probability density functions, the info-gap method is deterministic 

and is essentially a sensitivity analysis on selected model parameters. While there is nothing 

inherently wrong with this, we suspect that the use of realistic prior distributions coupled 

with informative probability models for inspection and detection are likely to yield more 

informative results than the IG method. One of the difficulties with the IG approach is the 

interpretation of the robustness metric that is central to the IG paradigm (Fox, 2008). Other 

issues with the IG philosophy have been raised by Sniedovich (2007). Irrespective of the 

method used, a recurring message from these types of analyses is that the invariably small, 

flat-rate inspection policies that are in widespread use at present are unlikely to provide 
                                                 
1 This term has been attributed to former US Defence Secretary Donald Rumsfeld who used it during a press briefing on 
Afghanistan on February 12, 2002. 
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adequate levels of immunity to the severe uncertainty that characterises biosecurity and 

biosurveillance. Given the importance and level of interest in robust decision-making for 

biosecurity, considerably more work needs to be done in this area. 
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APPENDIX A : DATA USED IN CHAPTER 1 EXAMPLE 
 

 
Table entries are days 

 
  

* 5.966 23.313 20.971 18.324 6.164 8.349 1.108 19.483 9.941

3.563 3.743 1.552 9.793 2.808 22.799 2.789 0.015 0.104 2.83

21.088 0.702 9.899 21.599 1.16 0.965 0.195 21.147 0.423 5.451

16.495 2.707 1.047 5.013 5.712 7.103 4.145 5.057 8.668 19.926

6.384 2.808 15.013 7.363 0.349 1.98 4.654 6.911 2.904 0.424

2.257 3.409 9.08 10.489 14.868 0.123 18.668 1.915 0.968 4.609

6.428 12.826 11.432 13.102 21.721 1.839 8.508 6.479 10.587 10.6

10.602 1.344 5.558 6.039 1.375 7.862 7.242 3.396 19.974 32.228

4.928 8.224 4.206 0.734 4.386 0.462 0.597 21.667 7.259 2.426

6.356 10.23 2.183 0.959 2.917 9.976 5.189 0.72 5.679 10.163

5.903 7.936 0.701 11.881 11.151 14.205 6.05 0.779 8.724 7.169

13.771 0.61 1.1 3.945 1.053 0.779 1.41 3.454 1.356 0.061

19.92 31.168 7.937 12.486 22.916 1.578 2.46 3.691 9.384 0.44

6.278 0.113 4.232 2.348 4.667 4.774 5.353 2.536 7.808 7.331

10.9 16.738 2.292 3.082 13.185 1.235 2.471 17.38 1.407 10.346

17.379 5.669 3.893 1.8 2.041 3.875 15.387 17.414 1.693 6.714

34.181 6.708 2.954 6.668 6.965 0.528 0.756 4.081 4.881 2.697

5.011 2.028 11.68 15.126 2.506 7.047 5.783 1.436 3.053 5.868

9.69 1.605 23.962 5.221 4.929 2.158 0.27 12.947 16.342 0.436

5.259 2.887 1.46 3.164 1.665 36.372 15.661 1.749 0.763 2.477

3.188 2.569 5.877 11.601 0.448 7.424 0.594 13.119 9.131 2.206

0.585 4.692 3.905 3.994 31.585 3.071 13.219 8.659 0.326 13.719

5.003 15.532 1.169 3.618 3.98 1.698 0.319 4.415 2.548 2.379

25.935 15.764 1.957 5.437 34.542 5.101 7.958 13.953 5.546 0.96

0.576 11.084 1.708 6.436 0.195 1.679 12.284 25.663 0.964 7.051

12.53 4.02 22.363 108.031



 

Page 127 

APPENDIX B: Derivation of Equation 2-5 
 
Equation 2-5 is given in the text as: 
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The integrand in equation A2 is the expected value of Ne  with respect to the ( , )y a b 
density. 
 
The moment-generating function for a ( , )y a b  density is 
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It is relatively straightforward to show that the ratio of the two beta terms in equation A4 

can be expressed as
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APPENDIX C: Derivation of Equation 2-9 
 
 
 
Equation 2-9 is given in the text as 
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The proof follows. 
 

As given in the text, 
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N n
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 is the total number of sampled units and Y is the total 

number of failures at time t i.e. 
1

t

i
i

Y X


 . Now,    
1

1 1

0

t t t tp X y f X p y d       

with      
 

t
t

t

p y p
p y

p y

 
  .   

 

Furthermore,      
1

0

t tp y p y p d    with       111
1

,

bap
a b

  


  .  
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 ~Y Poisson N   i.e.    
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where NE e 


   is the expectation of N with respect to the pdf for  [i.e. the 

 ,ty a b  density].  

 
From mathematical distribution theory, it is known that the moment generating function for the 
beta density is defined as: 
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Returning to 1t tp X y  we can write    
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Noting that the integrand in equation B.6 is a beta pdf, we have: 
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thus completing the proof.    
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APPENDIX D : DATA USED IN CHAPTER 3 EXAMPLE 
 

Row Column x n Row Column x n 

20 13 0 10 24 20 0 9 

22 26 0 12 12 7 0 13 

3 16 0 9 20 15 0 8 

8 23 1 13 25 24 0 9 

1 24 0 4 24 17 0 8 

2 19 0 11 13 17 4 5 

14 14 1 7 17 18 0 11 

24 24 0 17 18 22 4 12 

16 16 0 10 26 5 0 7 

26 21 0 14 10 8 1 9 

19 20 0 3 20 6 0 17 

16 13 0 6 25 7 0 14 

12 11 2 10 12 2 0 8 

13 2 0 13 20 3 0 14 

16 1 0 8 9 6 2 8 

2 17 0 15 25 3 0 15 

10 1 0 11 14 7 0 9 

15 19 6 8 7 21 0 6 

19 17 0 12 25 22 0 12 

18 5 0 10 3 13 1 15 

17 4 0 6 12 9 0 6 

7 26 0 10 23 8 0 17 

15 8 0 6 21 24 1 13 

12 24 3 14 14 2 0 15 

6 22 0 8 14 15 2 14 

26 22 0 12 21 6 0 9 

4 7 7 11 8 16 6 8 

4 16 0 13 2 5 3 11 

12 18 10 10 22 22 0 11 

4 10 9 11 24 7 0 5 

23 25 0 11 8 18 1 6 

5 14 3 11 3 11 1 8 

16 14 0 5 16 23 5 6 

9 5 0 9 17 15 0 14 

1 7 0 4 3 23 0 7 

6 8 12 13 2 24 0 15 

4 22 0 6 25 16 0 6 

14 4 0 12 6 11 6 10 

23 18 0 11 21 9 0 10 

22 15 0 11 6 12 7 14 

26 9 0 9 1 3 3 11 
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Row Column x n Row Column x n 

26 8 0 13 22 9 0 12 

18 9 0 11 11 11 3 9 

8 22 0 10 18 15 0 9 

4 6 7 9 20 26 0 8 

12 1 0 10 17 19 1 9 

13 15 2 7 13 6 0 8 

12 19 6 7 13 19 12 13 

19 15 0 14 5 3 2 7 

2 9 2 9 1 6 1 5 

1 17 0 10 16 20 3 8 

10 21 2 13 4 13 0 8 

10 5 0 11 25 17 0 6 

2 6 3 8 9 19 3 7 

2 3 5 12 18 16 0 11 

22 14 0 14 12 4 0 11 

16 25 5 13 7 9 5 7 

13 18 10 11 19 10 0 14 

21 5 0 4 3 5 5 14 

5 23 0 12 1 21 0 10 

18 17 0 6 22 11 0 9 

13 11 0 14 26 18 0 11 

26 17 0 9 26 14 0 7 

18 8 0 9 7 24 0 12 

7 17 2 8 9 17 5 9 

1 13 0 13 5 6 6 8 

15 1 0 7 14 17 5 9 

17 8 0 9 6 2 0 12 

6 25 0 15 16 2 0 15 

4 24 0 15 25 26 0 10 

24 5 0 9 26 16 0 8 

25 21 0 5 7 12 10 12 

2 4 6 12 3 3 5 10 
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APPENDIX  E : MATHCAD CODE FOR CELLULAR 
AUTOMATA MODEL 

 
 
 

 

 
 

 
 

 
 

 
 
 

 
 

  

 
 

 
 

 

 

 
 
 
 
 

 

D 

Establish grid dimensions 

   

  

 

 

 

Define spatial probability model(s) 

Data Entry - observed cases and locations 

Data matrix D: col1=row index; col2=col index; col3=r cases; col4=sample size N 

 

 

 
P is matrix of observed proportions 

Initial probabilities 

R 26 C 26 i 1 R j 1 C

a 0.0025 b .0055

p r1 c1 r2 c2( ) exp 0.5
r1 r2( )

2
c1 c2( )

2
 
.12












p1 r1 c1 r2 c2( ) exp 1
r1 r2( )

2

a

2 r1 r2( ) c1 c2( )

a b


c1 c2( )
2

b





















g a b( ) 0 K rows D( ) 1

I matrix R C g( )
L 0 K

P
DL 0  DL 1

D
L 2

D
L 3



GG r0 c0( )

g
i j p1 r0 c0 i j( )

j 1 Cfor

i 1 Rfor

M g

Mreturn


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Update probabilities 

 

 

Likelihood Function 

M A( ) B A

P 1

P P A
is js 1 p is js ii jj( )( ) 1 A

is js   is ii js jjif

js jj 1( ) jj 1( )for

is ii 1( ) ii 1( )for

B
ii jj A

ii jj 1 A
ii jj  1 P( )

jj C 1 1for

ii R 1 1for

B



L1 G tt( )

A G
it



sum 0

 if A
Dil 0  Dil 1 0 A

Dil 0  Dil 1 10
30









 if  1  0.999999( )

sum sum D
il 2 log ( ) D

il 3 D
il 2  log 1 ( ) 

il 0 Kfor

BB
it

sum

it 0 ttfor

BBreturn


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Iterative step 

Execute Spatial-Temporal Likelihood Routine 

 Call Likelihood routine and evaluate for 200 time increments 

 
For each grid cell extract max. likelihood value and time

 

Lik ( )

G
0

GG r0 c0( )

G
T

M G
T 1 

T 1 for

LL L1 G ( )

x
t

t

t 0 rows LL( ) 1( )for

vs cspline x LL( )

fit xx( ) interp vs x LL xx( )

dfit xx( )
xx

fit xx( )d

d


xx


2


 t0 root dfit xx( ) xx( )on error

Tmax
r0 c0 t0

Lmax
r0 c0 fit t0( )

c0 1 Cfor

r0 1 Rfor

result stack Tmax Lmax( )

resultreturn



Q Lik 200( )

Qt submatrix Q 3 23 3 23( )

Ql submatrix Q 28 53 1 26( )
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APPENDIX  F :  DATA USED IN CHAPTER 4 EXAMPLE 
 

Source: NSW Department of Local Government Comparative Information on New South Wales:  
http://www.dlg.nsw.gov.au/Files/Comparatives/0506data.xls (2005/06 population data).  
Eastings and Northings were separately digitised and generally correspond to the location of the shire 
office or the main shire town. 
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LGA Area Popn Density East North

Albury City Council 313 47247 150.9489 55489544.19 6006937.56

Armidale Dumaresq Council 4235 24611 5.811334 56372288.10 6623485.37

The Council of the Municipality of Ashfield 8 40018 5002.25 56326691.92 6248511.47

Auburn Council 32 64209 2006.531 56318056.99 6252811.05

Ballina Shire Council 484 39953 82.54752 56554531.31 6806290.42

Balranald Shire Council 21699 2730 0.125812 54734757.03 6164111.33

Bankstown City Council 77 177000 2298.701 56320515.48 6246228.39

Bathurst Regional Council 3820 37001 9.686126 55737652.31 6300358.92

The Council of the Shire of Baulkham Hills 401 161068 401.6658 56313143.65 6262799.59

Bega Valley Shire Council 6280 32431 5.164172 55754085.51 5937494.66

Bellingen Shire Council 1602 12758 7.963795 56490221.37 6631080.26

Berrigan Shire Council 2067 8289 4.01016 55392522.77 6053397.24

Blacktown City Council 240 283458 1181.075 56306319.45 6261359.58

Bland Shire Council 8560 6530 0.76285 55562644.59 6238218.91

Blayney Shire Council 1525 6773 4.441311 55709424.31 6287420.05

Blue Mountains City Council 1432 76511 53.42947 56245749.74 6253862.08

Bogan Shire Council 14611 3105 0.212511 55543782.77 6465771.25

Bombala Council 3944 2534 0.642495 55699752.38 5912814.16

Boorowa Council 2579 2495 0.967429 55657688.30 6187875.51

The Council of the City of Botany Bay 22 37074 1685.182 56333335.12 6242502.82

Bourke Shire Council 41679 3906 0.093716 55397636.12 6670893.85

Brewarrina Shire Council 19188 2168 0.112987 55486395.53 6685470.28

Broken Hill City Council 170 20203 118.8412 54544093.91 6463992.40

Burwood Council 7 31158 4451.143 56324615.79 6249816.81

Byron Shire Council 567 30827 54.36861 56559834.71 6831369.76

Cabonne Shire Council 6026 12703 2.108032 55674404.14 6336963.95

Camden Council 201 51367 255.5572 56287315.55 6229394.42

Campbelltown City Council 312 150216 481.4615 56298132.52 6228207.01

City of Canada Bay Council 20 67261 3363.05 56325763.09 6251416.42

Canterbury City Council 34 134126 3944.882 56325862.77 6247335.13

Carrathool Shire Council 18940 3274 0.172862 55355775.11 6191578.81

Central Darling Shire Council 53511 2406 0.044963 54769399.77 6473160.35

Cessnock City Council 1966 48502 24.6704 56343973.20 6366566.04

Clarence Valley Council 10441 49538 4.744565 56493548.28 6715426.76

Cobar Shire Council 45606 5013 0.10992 55389904.90 6514598.89

Coffs Harbour City Council 1175 67442 57.39745 56512367.25 6649928.18

Conargo Shire Council 8751 1782 0.203634 55334636.58 6091907.25

Coolamon Shire Council 2433 4127 1.69626 55518298.98 6147394.41

Cooma‐Monaro Shire Council 5229 9792 1.872633 55691001.82 5987716.22

Coonamble Shire Council 9926 4714 0.474914 55632618.98 6574634.93

Cootamundra Shire Council 1524 7623 5.001969 55593913.40 6166502.05

Corowa Shire Council 2324 11058 4.758176 55445129.82 6016107.36

Cowra Shire Council 2810 13185 4.692171 55656488.52 6254887.97

Deniliquin Council 130 8169 62.83846 55314945.72 6066425.01

Dubbo City Council 3428 39263 11.45362 55651130.34 6431257.08

Dungog Shire Council 2251 8440 3.749445 56383121.71 6414117.90

Eurobodalla Shire Council 3422 36389 10.63384 55768055.96 5996288.26

Fairfield City Council 102 187790 1841.078 56310890.27 6250540.33

Forbes Shire Council 4720 9974 2.113136 55593744.79 6305538.82

Gilgandra Shire Council 4836 4660 0.963606 55657591.12 6490315.33

Glen Innes Severn Council 5487 8735 1.591945 56493539.67 6715131.84

Gloucester Shire Council 2952 4917 1.66565 56405622.61 6433457.25

Gosford City Council 940 163304 173.7277 56345843.68 6300152.02

Goulburn Mulwaree Council 3220 27112 8.419876 55748774.02 6150722.05

Great Lakes Council 3376 34695 10.27696 56453974.41 6439552.50

Greater Hume Shire Council 5746 10510 1.829099 55503364.04 6052899.50
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Greater Taree City Council 3730 46986 12.59678 56453923.26 6469651.07

Griffith City Council 1640 25140 15.32927 55411983.84 6205380.69

Gundagai Shire Council 2458 3764 1.531326 55600985.37 6119128.65

Gunnedah Shire Council 4994 12074 2.417701 56237879.00 6569537.96

Guyra Shire Council 4395 4460 1.01479 56372299.30 6656404.23

Gwydir Shire Council 9453 5530 0.584999 56346675.62 6661081.79

Harden Shire Council 1869 3773 2.018727 55625658.56 6175448.30

Hawkesbury City Council 2776 63824 22.99135 56297510.80 6279081.23

Hay Shire Council 11328 3534 0.31197 55302157.44 6180238.52

Holroyd City Council 40 91941 2298.525 56314305.51 6254900.40

The Council of the Shire of Hornsby 462 157204 340.2684 56232801.04 6268957.55

The Council of the Municipality of Hunters Hill 6 13928 2321.333 56328936.41 6254666.14

Hurstville City Council 23 76036 3305.913 56324566.30 6239997.91

Inverell Shire Council 8606 15794 1.835231 56317571.48 6704579.90

Jerilderie Shire Council 3375 1871 0.55437 55384546.63 6086686.12

Junee Shire Council 2031 5922 2.915805 55553436.85 6141106.73

Kempsey Shire Council 3380 28742 8.50355 56484928.10 6561452.45

The Council of the Municipality of Kiama 258 20357 78.9031 56303626.32 6161275.82

Kogarah Municipal Council 16 55800 3487.5 56327543.22 6240364.98

Ku‐ring‐gai Council 86 108697 1263.919 56327503.08 6257453.72

Kyogle Council 3589 9630 2.683199 56500401.96 6833849.82

Lachlan Shire Council 14973 7360 0.491551 56502628.97 6836653.29

Lake Macquarie City Council 644 190320 295.528 56367738.45 6340389.58

Lane Cove Municipal Council 11 32326 2938.727 56330507.85 6256892.92

Leeton Shire Council 1167 12026 10.30506 55445543.27 6176454.44

Leichhardt Municipal Council 11 51142 4649.273 56328303.11 6249671.53

Lismore City Council 1290 43628 33.82016 56524662.57 6813735.01

City of Lithgow Council 4567 20889 4.5739 56235915.36 6291875.75

Liverpool City Council 305 170192 558.0066 56308135.68 6243967.18

Liverpool Plains Shire Council 5086 7852 1.543846 56279679.29 6511748.58

Lockhart Shire Council 2895 3520 1.215889 55474185.61 6102402.15

Maitland City Council 392 61517 156.9311 56364940.41 6377203.27

Manly Council 15 38886 2592.4 56341520.33 6259018.68

Marrickville Council 17 75114 4418.471 56329631.61 6246191.78

Mid‐Western Regional Council 8737 22141 2.534165 55742729.20 6391132.55

Moree Plains Shire Council 17928 15936 0.888889 55775586.20 6737355.89

Mosman Municipal Council 9 28363 3151.444 56337511.71 6255408.96

Murray Shire Council 4345 6729 1.548677 55310506.69 6034804.42

Murrumbidgee Shire Council 3505 2620 0.747504 55397800.91 6147943.88

Muswellbrook Shire Council 3406 15149 4.447739 56301140.37 6428420.07

Nambucca Shire Council 1491 18755 12.57881 56489126.94 6604929.58

Narrabri Shire Council 13031 14172 1.08756 55767571.32 6641936.98

Narrandera Shire Council 4117 6582 1.598737 55459446.51 6155188.87

Narromine Shire Council 5264 7033 1.336056 55616795.69 6433183.33

Newcastle City Council 183 146967 803.0984 56386048.62 6356218.24

North Sydney Council 11 60944 5540.364 56334048.79 6254330.01

Oberon Council 3627 5447 1.501792 55764651.74 6267017.81

Orange City Council 285 37791 132.6 55695559.24 6315302.28

Palerang Council 5134 11470 2.234125 55722018.65 6095827.43

Parkes Shire Council 5958 15034 2.52333 55609517.33 6332764.55

Parramatta City Council 61 151860 2489.508 56315214.15 6256346.91

Penrith City Council 405 177955 439.3951 56286574.28 6263835.68

Pittwater Council 91 57354 630.2637 56342396.61 6278492.66

Port Macquarie‐Hastings Council 3687 70581 19.14321 56485350.65 6525726.25

Port Stephens Council 858 63579 74.1014 56412603.20 6383659.01

Queanbeyan City Council 172 37169 216.0988 55702816.16 6085362.79
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Randwick City Council 36 126034 3500.944 56337477.15 6246080.77

Richmond Valley Council 3051 20913 6.854474 56504462.10 6807112.80

Rockdale City Council 28 95341 3405.036 56326583.34 6242267.69

Ryde City Council 41 99550 2428.049 56322072.18 6258394.28

Shellharbour City Council 147 63124 429.415 56301532.58 6173077.36

Shoalhaven City Council 4568 93615 20.49365 56293860.94 6141111.81

Singleton Shire Council 4896 22270 4.548611 56328047.51 6395563.94

Snowy River Shire Council 6030 7293 1.209453 55664173.05 5973508.95

Strathfield Municipal Council 14 31624 2258.857 56323712.34 6250189.48

Sutherland Shire Council 335 215053 641.9493 56320710.43 6232658.02

Council of the City of Sydney 27 148367 5495.074 56334163.20 6251129.02

Tamworth Regional Council 9713 54522 5.613302 56302632.83 6558389.66

Temora Shire Council 2802 6337 2.261599 55549030.58 6188166.31

Tenterfield Shire Council 7332 6805 0.928123 56404713.87 6787004.06

Tumbarumba Shire Council 4392 3613 0.822632 55591544.06 6040261.05

Tumut Shire Council 4566 11347 2.485107 55611372.19 6092928.90

Tweed Shire Council 1309 80935 61.82964 56538815.48 6866575.02

Upper Hunter Shire Council 8071 13424 1.663239 56250573.49 6441047.34

Upper Lachlan Shire Council 7102 7328 1.031822 55726919.69 6184282.75

Uralla Shire Council 3230 6075 1.880805 56356507.93 6609024.65

Urana Shire Council 3357 1389 0.413762 55433261.52 6090174.20

Wagga Wagga City Council 4824 58055 12.03462 55537764.94 6114710.87

The Council of the Shire of Wakool 7520 4836 0.643085 55263694.54 6071647.71

Walcha Council 6267 3283 0.523855 56365571.22 6570426.76

Walgett Shire Council 22336 8031 0.359554 55607681.74 6678300.78

Warren Shire Council 10760 3273 0.304182 55579346.64 6492580.42

Warringah Council 150 139626 930.84 56340392.61 6264446.51

Warrumbungle Shire Council 12380 10508 0.848788 55686315.27 6541687.52

Waverley Council 9 61611 6845.667 56338382.16 6247691.36

Weddin Shire Council 3410 3848 1.128446 55607364.63 6248881.02

Wellington Council 4113 8599 2.090688 55682594.43 6396278.51

Wentworth Shire Council 26269 7300 0.277894 54584782.43 6225613.24

Willoughby City Council 23 63959 2780.826 56333248.08 6258396.24

Wingecarribee Shire Council 2689 44670 16.61212 56262880.05 6181838.81

Wollondilly Shire Council 2557 41463 16.21549 56279419.07 6214683.49

Wollongong City Council 684 192402 281.2895 56307010.27 6188621.72

Woollahra Municipal Council 12 52747 4395.583 56337665.28 6250073.97

Wyong Shire Council 745 143393 192.4738 56353093.20 6313175.65

Yass Valley Council 3999 12936 3.234809 55674748.32 6142796.17

Young Shire Council 2694 12035 4.467335 55619421.95 6202330.27
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APPENDIX G:  LINGO® CODE FOR OPTIMAL SENSOR 
CONFIGURATION 

model: 
sets: 
row/1..14/:; 
col/1..14/:; 
 
 
type/1..3/:N; 
grid(row,col,type):E,X; 
 
G1(row,col,row,col):D,W; 
 
G2(row,col):Y,cost; 
 
endsets 
 
@for(G1(i1,j1,i2,j2):D(i1,j1,i2,j2)=@if(i1 #eq# i2 #and# j1 #eq# 
j2,999,@sqrt((i1-i2)^2+(j1-j2)^2))); 
 
 
!max=@sum(grid:E*X); 
 
min=@sum(grid:E*(1-X)); 
 
@for(type(k):@sum(grid(i,j,k):x(i,j,k))<=N(k)); 
 
@for(grid(i,j,k)| j #eq# 14:x(i,j,k)=0); 
 
@for(grid(i,j,k)|i #ge# 7 #and# j #eq# 13 :x(i,j,k)=0); 
 
@for(grid(i,j,k)|i #ge# 9 #and# j #eq# 12 :x(i,j,k)=0); 
 
@for(grid(i,j,k)|i #ge# 10 #and# j #eq# 11 :x(i,j,k)=0); 
 
@for(grid(i,j,k)|i #ge# 12 #and# j #eq# 10 :x(i,j,k)=0); 
 
 
@for(type(k): x(14,9,k)=0); 
 
@for(G2(i,j):@sum(type(k):x(i,j,k))<=1); 
 
@for(G2(i,j):Y(i,j)=@sum(type(k):x(i,j,k))); 
 
Total_cost=@sum(grid(i,j,k):x(i,j,k)*cost(i,j)); 
 
Total_cost<=20000; 
 
@for(row(i1): 
@for(col(j1): 
@for(row(i2): 
@for(col(j2): 
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Y(i1,j1)+Y(i2,j2)>=2*W(i1,j1,i2,j2); 
Y(i1,j1)+Y(i2,j2)-1<=W(i1,j1,i2,j2))))); 
 
 
@for(G1:999*(1-W)+D>2); 
 
 
!@for(grid:@sum(grid(i,j,k) | i #LE# 3 #AND# j #LE# 3:  
 x(i,j,k))<=1); 
 
!@for(grid:@sum(grid(i,j,k) |i #GE# 4 #AND# i #LE# 6 #AND# j #LE# 3: 
 x(i,j,k))<=1); 
 
!@for(grid:@sum(grid(i,j,k) |i #GE# 7 #AND# i #LE# 9 #AND# j #LE# 3: 
 x(i,j,k))<=1); 
 
!@for(grid:@sum(grid(i,j,k) |i #LE# 3 #AND# j #GE# 4 #AND# j #LE# 6: 
 x(i,j,k))<=1); 
 
!@for(grid:@sum(grid(i,j,k) |i #GE# 4 #AND# i #LE# 6 #AND# j #GE# 4 
#AND# j #LE# 6: 
 x(i,j,k))<=1); 
 
!@for(grid:@sum(grid(i,j,k) |i #GE# 7 #AND# i #LE# 9  #AND# j #GE# 4 
#AND# j #LE# 6: 
 x(i,j,k))<=1); 
 
!@for(grid:@sum(grid(i,j,k) |i #LE# 3 #AND# j #GE# 7 #AND# j #LE# 9: 
 x(i,j,k))<=1); 
 
!@for(grid:@sum(grid(i,j,k) |i #GE# 4 #AND# i #LE# 6 #AND# j #GE# 7 
#AND# j #LE# 9: 
 x(i,j,k))<=1); 
 
!@for(grid:@sum(grid(i,j,k) |i #GE# 7 #AND# i #LE# 9  #AND# j #GE# 7 
#AND# j #LE# 9: 
 x(i,j,k))<=1); 
 
 
@for(grid:@BIN(X)); 
@for(G1:@BIN(W)); 
 
 
data: 
 
E= 
0.09 0.136 0.166 
0.128 0.188 0.224 
0.14 0.212 0.231 
0.142 0.217 0.228 
0.142 0.214 0.22 
0.14 0.208 0.209 
0.137 0.202 0.202 
0.133 0.2 0.207 
0.132 0.204 0.224 
0.136 0.213 0.242 
0.141 0.22 0.251 
0.145 0.221 0.25 
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0.145 0.205 0.242 
0.113 0.156 0.195 
0.112 0.191 0.232 
0.152 0.259 0.304 
0.161 0.286 0.307 
0.16 0.287 0.296 
0.157 0.276 0.277 
0.148 0.263 0.256 
0.136 0.257 0.253 
0.131 0.266 0.282 
0.137 0.286 0.328 
0.152 0.306 0.359 
0.161 0.316 0.37 
0.161 0.31 0.361 
0.154 0.28 0.337 
0.122 0.21 0.266 
0.116 0.213 0.275 
0.155 0.282 0.348 
0.16 0.3 0.338 
0.154 0.288 0.312 
0.139 0.264 0.277 
0.123 0.249 0.251 
0.122 0.26 0.266 
0.146 0.302 0.339 
0.177 0.355 0.429 
0.195 0.392 0.474 
0.197 0.401 0.486 
0.185 0.383 0.47 
0.164 0.331 0.421 
0.124 0.24 0.321 
0.129 0.224 0.297 
0.164 0.285 0.358 
0.157 0.287 0.326 
0.136 0.256 0.283 
0.109 0.221 0.238 
0.093 0.212 0.217 
0.115 0.253 0.262 
0.176 0.341 0.386 
0.24 0.435 0.524 
0.269 0.494 0.583 
0.272 0.509 0.595 
0.255 0.481 0.578 
0.212 0.408 0.512 
0.146 0.286 0.376 
0.136 0.22 0.297 
0.164 0.266 0.336 
0.14 0.249 0.283 
0.104 0.205 0.23 
0.074 0.174 0.189 
0.071 0.184 0.189 
0.111 0.255 0.268 
0.191 0.376 0.432 
0.274 0.499 0.6 
0.317 0.576 0.664 
0.329 0.601 0.677 
0.32 0.577 0.671 
0.277 0.495 0.61 
0.189 0.347 0.441 
0.118 0.192 0.276 
0.125 0.219 0.289 
0.091 0.191 0.223 
0.064 0.155 0.177 
0.056 0.144 0.156 
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0.071 0.182 0.187 
0.12 0.276 0.295 
0.202 0.41 0.474 
0.286 0.535 0.641 
0.33 0.61 0.698 
0.343 0.638 0.709 
0.342 0.628 0.722 
0.312 0.558 0.694 
0.218 0.401 0.51 
0.09 0.155 0.241 
0.086 0.169 0.234 
0.061 0.144 0.171 
0.051 0.126 0.143 
0.06 0.142 0.149 
0.094 0.205 0.209 
0.161 0.312 0.332 
0.247 0.439 0.5 
0.306 0.54 0.637 
0.317 0.595 0.678 
0.319 0.62 0.69 
0.335 0.63 0.725 
0.334 0.586 0.746 
0.246 0.439 0.572 
0.076 0.128 0.204 
0.073 0.138 0.189 
0.055 0.124 0.141 
0.052 0.124 0.136 
0.07 0.158 0.164 
0.115 0.231 0.24 
0.177 0.33 0.36 
0.236 0.43 0.493 
0.272 0.501 0.589 
0.279 0.539 0.622 
0.284 0.568 0.642 
0.31 0.598 0.698 
0.335 0.586 0.768 
0.266 0.459 0.62 
0.066 0.11 0.17 
0.066 0.125 0.16 
0.055 0.125 0.135 
0.061 0.14 0.153 
0.085 0.181 0.193 
0.125 0.245 0.265 
0.169 0.319 0.365 
0.2 0.385 0.456 
0.216 0.433 0.517 
0.231 0.47 0.557 
0.248 0.513 0.598 
0.278 0.563 0.673 
0.313 0.575 0.777 
0.265 0.467 0.654 
0.056 0.096 0.14 
0.061 0.12 0.142 
0.065 0.137 0.142 
0.084 0.165 0.178 
0.107 0.204 0.221 
0.128 0.25 0.278 
0.149 0.297 0.352 
0.163 0.339 0.41 
0.177 0.379 0.454 
0.201 0.428 0.512 
0.229 0.491 0.582 
0.273 0.562 0.679 
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0.322 0.585 0.793 
0.277 0.48 0.677 
0.044 0.082 0.114 
0.061 0.114 0.129 
0.08 0.145 0.146 
0.102 0.18 0.194 
0.114 0.215 0.237 
0.125 0.249 0.279 
0.142 0.283 0.333 
0.157 0.32 0.376 
0.175 0.365 0.418 
0.208 0.431 0.496 
0.257 0.516 0.597 
0.315 0.6 0.711 
0.354 0.619 0.816 
0.29 0.499 0.688 
0.035 0.069 0.092 
0.05 0.102 0.114 
0.068 0.134 0.137 
0.093 0.172 0.184 
0.112 0.21 0.229 
0.125 0.244 0.267 
0.14 0.278 0.31 
0.159 0.318 0.347 
0.185 0.373 0.397 
0.23 0.455 0.49 
0.291 0.555 0.612 
0.349 0.64 0.731 
0.369 0.645 0.812 
0.289 0.509 0.671 
0.033 0.059 0.073 
0.045 0.085 0.094 
0.054 0.11 0.112 
0.073 0.142 0.149 
0.1 0.181 0.193 
0.125 0.22 0.232 
0.145 0.257 0.267 
0.164 0.299 0.301 
0.192 0.361 0.355 
0.243 0.449 0.451 
0.306 0.55 0.572 
0.358 0.626 0.679 
0.372 0.621 0.735 
0.291 0.484 0.598 
0.029 0.042 0.051 
0.039 0.059 0.068 
0.042 0.073 0.077 
0.05 0.093 0.1 
0.07 0.121 0.135 
0.093 0.153 0.169 
0.11 0.183 0.195 
0.13 0.218 0.222 
0.168 0.27 0.268 
0.222 0.341 0.348 
0.28 0.418 0.443 
0.322 0.473 0.521 
0.332 0.466 0.556 
0.26 0.362 0.45 
; 
N=1,2,2; 
 
cost= 
4280.094 
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4280.094 
4280.094 
4280.094 
4280.094 
4345.848 
5101.356 
5252.13 
5252.13 
5710.304 
6228.32 
6079.8 
6631.55 
6243.155 
4280.094 
4280.094 
4280.094 
4280.094 
4300.452 
5076.084 
5267.808 
5267.808 
5267.808 
5332.088 
5625.14 
5601.17 
5316.081 
5118.956 
4280.094 
4280.094 
4280.094 
4276.428 
4945.356 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5092.954 
4280.094 
4285.632 
4578.132 
5091.372 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5168.849 
5070.597 
4742.322 
5204.862 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
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5267.808 
5267.808 
5267.808 
5267.808 
5248.097 
5335.754 
5253.066 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5193.122 
5679.003 
5253.066 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5243.472 
5822.574 
5408.995 
5086.388 
5553.474 
5253.066 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5735.617 
6229.293 
6403.78 
5950.831 
6664.698 
5253.066 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5899.752 
6753.56 
6823.062 
6462.877 
8108.99 
5253.066 
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5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5219.353 
5902.19 
6986.068 
7652.653 
7672.996 
8323.233 
4827.732 
5173.74 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5267.808 
5357.372 
6275.522 
7181.484 
7945.927 
6766.541 
8616.6 
4280.094 
4267.068 
4560.426 
5070.702 
5267.808 
5267.808 
5267.808 
5237.856 
5804.34 
6404.603 
7280.268 
7856.119 
9231.327 
9019.89 
4280.094 
4280.094 
4280.094 
4272.918 
4619.082 
5153.85 
5183.193 
5223.22 
5684.175 
6045.716 
6912.198 
7961.793 
9211.644 
9576.162 
4280.094 
4280.094 
4280.094 
4280.094 
4280.094 
4292.184 
4697.551 
5176.938 
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5524.386 
6256.168 
7381.806 
8446.131 
8983.71 
10161.406 
; 
 
enddata 
 
end 
 




